172 resultados para VIBRATIONAL SPECTROSCOPY
Resumo:
The field of Molecular Spectroscopy was surveyed in order to determine a set of conventions and symbols which are in common use in the spectroscopic literature. This document, which is Part 2 in a series, establishes the notations and conventions used for the description of symmetry in rigid molecules, using the Schoenflies notation. It deals firstly with the symmetry operators of the molecular point groups (also drawing attention to the difference between symmetry operators and elements). The conventions and notations of the molecular point groups are then established, followed by those of the representations of these groups as used in molecular spectroscopy. Further parts will follow, dealing inter alia with permutation and permutation-inversion symmetry notation, vibration-rotation spectroscopy and electronic spectroscopy.
Resumo:
The field of Molecular Spectroscopy was surveyed in order to determine a set of conventions and symbols which are in common use in the spectroscopic literature. This document, which is Part 3 in a series, deals with symmetry notation referring to groups that involve nuclear permutations and the inversion operation. Further parts will follow, dealing inter alia with vibration-rotation spectroscopy and electronic spectroscopy.
Resumo:
Selection rules and matrix elements are derived for Coriolis interactions between vibrational levels due to rotation about (x, y) axes in symmetric top molecules. The theory is developed in detail for the case of interaction between an A1 and an E species vibrational level in a C3v molecule; perturbations to both the positions and the intensities of the rovibration transitions in the spectrum are considered. A computer program has been written which calculates exactly the perturbed spectrum of two interacting rovibration bands according to this model, the results being presented directly by a graph plotter connected to the computer. This has been used to interpret perturbations observed in two pairs of interacting fundamentals in the spectrum of CH3F (ν2 - ν5 and ν3 - ν6) and one pair in CD3Cl (ν2 - ν5). The resulting analysis of the observed spectrum leads to new values for some vibration-rotation interaction constants and also leads to a unique determination of the sign relationship between the dipole moment derivatives in each pair of interacting normal vibrations. These sign relations are summarized in Figs. 8, 12, and 15.
Resumo:
The harmonic and anharmonic force field of acetylene has been determined in a least-squares calculation from recently determined data on the spectroscopic constants of various isotopic species (including the vibrational l-doubling constant). A general quadratic and cubic force field was used, but a constrained quartic force field containing only 8 of the 23 possible quartic constants. The results are discussed and compared with earlier work.
Resumo:
Absolute intensity measurements have been made on the fundamental vibrations of ethylene and four of its deuteroisotopes. The bands were pressure broadened with nitrogen at 50 atmos, and the intensities were determined by the method of Wilson and Wells except that the observed optical density was integrated against logv rather than v. Normal coordinates have been calculated, and the intensities have been interpreted in terms of quantities (∂p/∂Si) giving the change in dipole moment with respect to each internal symmetry coordinate. Data from the different isotopic species have been used to eliminate ambiguities in the interpretation. Effective bond moments are calculated for each symmetry coordinate.
Resumo:
The microwave spectra of CHD2CN and CHD2NC have been measured from 18 to 40 GHz; about 20 type A and 30 type C transitions have been observed for each molecule. These have been fitted to a Hamiltonian using 3 rotational constants, and 5 quartic and 4 sextic distortion constants, in the IrS reduction of Watson [in “Vibrational spectra and structure” Vol. 6 (1977)]; the standard error of the fit is 26 kHz. For methyl cyanide the 5 quartic distortion constants have been used to further refine the recent harmonic force field of Duncan et al. [J. Mol. Spectrosc. 69, 123 (1978)], but the changes are small. Finally, for both molecules, the harmonic force field has been used to determine zero point average moments of inertia Iz from the ground state rotational constants for many isotopic species, and these have been used to determine an rz structure. The results are compared with rs structure calculations.
Resumo:
The J + 1 ← J transitions (J = 2, 3, 4, 5, and 6) in the microwave spectrum of SiH3NCO have been assigned for the vibrational ground state and for the vibrational states v10 = 1, 2, and 3. The results for v10 = 0 confirm earlier work. The vibration-rotation constants show a remarkable variation with v10 and l10. To a large extent the anomalous behavior of these constants has been explained in terms of a strongly anharmonic potential function for the ν10 vibrational mode.
Resumo:
High resolution infrared spectra of the ν9 and ν10 perpendicular fundamentals of the allene molecule are reported, in which the J structure in the sub-bands has been partially resolved. Analysis of the latter shows that the vibrational origin ν9 = 999 cm−1, some 35 cm−1 below previous assignments. The pronounced asymmetry in the intensity distribution of the rotational structure which this assignment implies is shown to be expected theoretically, due to the Coriolis perturbations involved, and it is interpreted in terms of the sign and magnitude of the ratio of the dipole moment derivatives in the two fundamentals. The results of this analysis are shown to be in good agreement with observations on allene-1.1-d2, where similar intensity perturbations are observed, and with an independent analysis of the ν8 band of allene-h4. The A rotational constant of allene-h4 is found to have the value 4.82 ± 0.01 cm−1, and for the molecular geometry we obtain r(CH) = 1.084 A, r(CC) = 1.308 A, and HCH = 118.4°. A partial analysis of the rotational structure of the hot bands (ν9 + ν11 − ν11) and (ν10 + ν11 − ν11) is presented; these provide an example of a strong Coriolis interaction between nearly degenerate A1A2 and B1B2 pairs of vibrational levels. Some localized rotational perturbations in the ν9 and ν10 fundamentals are also noted, and their possible interpretations are discussed.
Resumo:
The microwave spectra of 2-aminopyridine-NH2, -ND2, and of both of the two possible -NHD molecules have been observed and assigned in the 0+ vibrational state of the amino group inversion vibration; the assignment for three of the molecules in the 0− state is also made. From intensity measurements the 0+-0− splitting is estimated to be 135 ± 25 cm−1 for the -NH2 molecule and 95 ± 30 cm−1 for the -ND2 molecule. The rotational constants are interpreted in terms of a structure in which the amino group is bent about 32° out of the molecular plane, the c coordinates of the two amino H atoms being 0.21 and 0.28 Å. Stark effect measurements give a dipole moment of about 0.9 D which is almost entirely in the b axis, and which changes quite significantly between the 0+ and 0− states.
Resumo:
The microwave spectra of oxetane (trimethylene oxide) and its three symmetrically deuterated isotopic species have been observed on a Hewlett-Packard microwave spectrometer from 26.5 to 40 GHz. For the parent species, the β-d2 and the αα′-d4 species, about 300 lines have been assigned for each molecule, and for the d6 species more than 600 lines have been assigned. The assignments range from v = 0 to v = 5 in the puckering vibration; although they are mostly Q transitions, either 3 or 4 R transitions have been observed for each vibrational state. The spectra have been interpreted using an effective rotational hamiltonian for each vibrational state, including five quartic distortion constants according to Watson's formulation, and a variable number of sextic distortion constants; in general, the lines are fitted to about ± 10 kHz. The distortion constants show an anomalous zig-zag dependence on the puckering vibrational quantum number, similar to that first observed for the rotational constants by Gwinn and coworkers. This is interpreted according to a simple modification of the standard theory of centrifugal distortion, involving the double minimum potential function in the puckering coordinate.
Resumo:
Infrared spectra of thoformaldehyde, H2CS and D2CS, were observed in the gas phase at a resolution of better than 0.1 cm−1 from 4000 to 400 cm−1 using a Nicolet FTIR system. Vibrational band origins and rotational constants were determined for ν2, ν3, ν4, and ν6 of H2CS and for ν1, ν2, ν3, ν4, and ν6 of D2CS. The ν3, ν4, and ν6 bands of H2CS were analyzed as a set of three Coriolis interacting bands, and three Coriolis constants were determined; similarly the ν4 and ν6 bands of D2CS were analyzed as a pair of interacting bands and one Coriolis constant was determined. A general harmonic force field was determined, without constraints, to fit the vibrational wavenumbers, Coriolis constants, and centrifugal distortion constants. A zero-point (rz) structure was determined from the ground-state rotational constants, and the equilibrium (re) bond lengths were estimated.