110 resultados para Uncertainty in generation
Resumo:
Debate over the late Quaternary megafaunal extinctions has focussed on whether human colonisation or climatic changes were more important drivers of extinction, with few extinctions being unambiguously attributable to either. Most analyses have been geographically or taxonomically restricted and the few quantitative global analyses have been limited by coarse temporal resolution or overly simplified climate reconstructions or proxies. We present a global analysis of the causes of these extinctions which uses high-resolution climate reconstructions and explicitly investigates the sensitivity of our results to uncertainty in the palaeological record. Our results show that human colonisation was the dominant driver of megafaunal extinction across the world but that climatic factors were also important. We identify the geographic regions where future research is likely to have the most impact, with our models reliably predicting extinctions across most of the world, with the notable exception of mainland Asia where we fail to explain the apparently low rate of extinction found in in the fossil record. Our results are highly robust to uncertainties in the palaeological record, and our main conclusions are unlikely to change qualitatively following minor improvements or changes in the dates of extinctions and human colonisation.
Resumo:
While there is an extensive and still growing body of literature on women in academia and the challenges they encounter in career progression, there is little research on their experience specifically within a business school setting. In this study, we attempt to address this gap and examine the experiences and career development of female academics in a business school and how these are impacted by downsizing programmes. To this end, an exploratory case study is conducted. The findings of this study show that female business school academics experience numerous challenges in terms of promotion and development, networking, and the multiple and conflicting demands placed upon them. As a result, the lack of visibility seems to be a pertinent issue in terms of their career progression. Our data also demonstrates that that, paradoxically, during periods of downsizing women become more visible and thus vulnerable to layoffs as a consequence of the challenges and pressures created in their environment during this process. In this paper, we argue that this heightened visibility, and being subject to possible layoffs, further reproduces inequality regimes in academia.
Resumo:
Despite the many models developed for phosphorus concentration prediction at differing spatial and temporal scales, there has been little effort to quantify uncertainty in their predictions. Model prediction uncertainty quantification is desirable, for informed decision-making in river-systems management. An uncertainty analysis of the process-based model, integrated catchment model of phosphorus (INCA-P), within the generalised likelihood uncertainty estimation (GLUE) framework is presented. The framework is applied to the Lugg catchment (1,077 km2), a River Wye tributary, on the England–Wales border. Daily discharge and monthly phosphorus (total reactive and total), for a limited number of reaches, are used to initially assess uncertainty and sensitivity of 44 model parameters, identified as being most important for discharge and phosphorus predictions. This study demonstrates that parameter homogeneity assumptions (spatial heterogeneity is treated as land use type fractional areas) can achieve higher model fits, than a previous expertly calibrated parameter set. The model is capable of reproducing the hydrology, but a threshold Nash-Sutcliffe co-efficient of determination (E or R 2) of 0.3 is not achieved when simulating observed total phosphorus (TP) data in the upland reaches or total reactive phosphorus (TRP) in any reach. Despite this, the model reproduces the general dynamics of TP and TRP, in point source dominated lower reaches. This paper discusses why this application of INCA-P fails to find any parameter sets, which simultaneously describe all observed data acceptably. The discussion focuses on uncertainty of readily available input data, and whether such process-based models should be used when there isn’t sufficient data to support the many parameters.
Resumo:
Models developed to identify the rates and origins of nutrient export from land to stream require an accurate assessment of the nutrient load present in the water body in order to calibrate model parameters and structure. These data are rarely available at a representative scale and in an appropriate chemical form except in research catchments. Observational errors associated with nutrient load estimates based on these data lead to a high degree of uncertainty in modelling and nutrient budgeting studies. Here, daily paired instantaneous P and flow data for 17 UK research catchments covering a total of 39 water years (WY) have been used to explore the nature and extent of the observational error associated with nutrient flux estimates based on partial fractions and infrequent sampling. The daily records were artificially decimated to create 7 stratified sampling records, 7 weekly records, and 30 monthly records from each WY and catchment. These were used to evaluate the impact of sampling frequency on load estimate uncertainty. The analysis underlines the high uncertainty of load estimates based on monthly data and individual P fractions rather than total P. Catchments with a high baseflow index and/or low population density were found to return a lower RMSE on load estimates when sampled infrequently than those with a tow baseflow index and high population density. Catchment size was not shown to be important, though a limitation of this study is that daily records may fail to capture the full range of P export behaviour in smaller catchments with flashy hydrographs, leading to an underestimate of uncertainty in Load estimates for such catchments. Further analysis of sub-daily records is needed to investigate this fully. Here, recommendations are given on load estimation methodologies for different catchment types sampled at different frequencies, and the ways in which this analysis can be used to identify observational error and uncertainty for model calibration and nutrient budgeting studies. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
An integrated approach to climate change impact assessment is explored by linking established models of regional climate (SDSM), water resources (CATCHMOD) and water quality (INCA) within a single framework. A case study of the River Kennet illustrates how the system can be used to investigate aspects of climate change uncertainty, deployable water resources, and water quality dynamics in upper and lower reaches of the drainage network. The results confirm the large uncertainty in climate change scenarios and freshwater impacts due to the choice of general circulation model (GCM). This uncertainty is shown to be greatest during summer months as evidenced by large variations between GCM-derived projections of future tow river flows, deployable yield from groundwater, severity of nutrient flushing episodes, and Long-term trends in surface water quality. Other impacts arising from agricultural land-use reform or delivery of EU Water Framework Directive objectives under climate change could be evaluated using the same framework. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
[1] Cloud cover is conventionally estimated from satellite images as the observed fraction of cloudy pixels. Active instruments such as radar and Lidar observe in narrow transects that sample only a small percentage of the area over which the cloud fraction is estimated. As a consequence, the fraction estimate has an associated sampling uncertainty, which usually remains unspecified. This paper extends a Bayesian method of cloud fraction estimation, which also provides an analytical estimate of the sampling error. This method is applied to test the sensitivity of this error to sampling characteristics, such as the number of observed transects and the variability of the underlying cloud field. The dependence of the uncertainty on these characteristics is investigated using synthetic data simulated to have properties closely resembling observations of the spaceborne Lidar NASA-LITE mission. Results suggest that the variance of the cloud fraction is greatest for medium cloud cover and least when conditions are mostly cloudy or clear. However, there is a bias in the estimation, which is greatest around 25% and 75% cloud cover. The sampling uncertainty is also affected by the mean lengths of clouds and of clear intervals; shorter lengths decrease uncertainty, primarily because there are more cloud observations in a transect of a given length. Uncertainty also falls with increasing number of transects. Therefore a sampling strategy aimed at minimizing the uncertainty in transect derived cloud fraction will have to take into account both the cloud and clear sky length distributions as well as the cloud fraction of the observed field. These conclusions have implications for the design of future satellite missions. This paper describes the first integrated methodology for the analytical assessment of sampling uncertainty in cloud fraction observations from forthcoming spaceborne radar and Lidar missions such as NASA's Calipso and CloudSat.
Resumo:
With both climate change and air quality on political and social agendas from local to global scale, the links between these hitherto separate fields are becoming more apparent. Black carbon, largely from combustion processes, scatters and absorbs incoming solar radiation, contributes to poor air quality and induces respiratory and cardiovascular problems. Uncertainties in the amount, location, size and shape of atmospheric black carbon cause large uncertainty in both climate change estimates and toxicology studies alike. Increased research has led to new effects and areas of uncertainty being uncovered. Here we draw together recent results and explore the increasing opportunities for synergistic research that will lead to improved confidence in the impact of black carbon on climate change, air quality and human health. Topics of mutual interest include better information on spatial distribution, size, mixing state and measuring and monitoring. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
One of the primary goals of the Center for Integrated Space Weather Modeling (CISM) effort is to assess and improve prediction of the solar wind conditions in near‐Earth space, arising from both quasi‐steady and transient structures. We compare 8 years of L1 in situ observations to predictions of the solar wind speed made by the Wang‐Sheeley‐Arge (WSA) empirical model. The mean‐square error (MSE) between the observed and model predictions is used to reach a number of useful conclusions: there is no systematic lag in the WSA predictions, the MSE is found to be highest at solar minimum and lowest during the rise to solar maximum, and the optimal lead time for 1 AU solar wind speed predictions is found to be 3 days. However, MSE is shown to frequently be an inadequate “figure of merit” for assessing solar wind speed predictions. A complementary, event‐based analysis technique is developed in which high‐speed enhancements (HSEs) are systematically selected and associated from observed and model time series. WSA model is validated using comparisons of the number of hit, missed, and false HSEs, along with the timing and speed magnitude errors between the forecasted and observed events. Morphological differences between the different HSE populations are investigated to aid interpretation of the results and improvements to the model. Finally, by defining discrete events in the time series, model predictions from above and below the ecliptic plane can be used to estimate an uncertainty in the predicted HSE arrival times.
Resumo:
A large ensemble of general circulation model (GCM) integrations coupled to a fully interactive sulfur cycle scheme were run on the climateprediction.net platform to investigate the uncertainty in the climate response to sulfate aerosol and carbon dioxide (CO2) forcing. The sulfate burden within the model (and the atmosphere) depends on the balance between formation processes and deposition (wet and dry). The wet removal processes for sulfate aerosol are much faster than dry removal and so any changes in atmospheric circulation, cloud cover, and precipitation will feed back on the sulfate burden. When CO2 is doubled in the Hadley Centre Slab Ocean Model (HadSM3), global mean precipitation increased by 5%; however, the global mean sulfate burden increased by 10%. Despite the global mean increase in precipitation, there were large areas of the model showing decreases in precipitation (and cloud cover) in the Northern Hemisphere during June–August, which reduced wet deposition and allowed the sulfate burden to increase. Further experiments were also undertaken with and without doubling CO2 while including a future anthropogenic sulfur emissions scenario. Doubling CO2 further enhanced the increases in sulfate burden associated with increased anthropogenic sulfur emissions as observed in the doubled CO2-only experiment. The implications are that the climate response to doubling CO2 can influence the amount of sulfate within the atmosphere and, despite increases in global mean precipitation, may act to increase it.
Resumo:
Uncertainties associated with the representation of various physical processes in global climate models (GCMs) mean that, when projections from GCMs are used in climate change impact studies, the uncertainty propagates through to the impact estimates. A complete treatment of this ‘climate model structural uncertainty’ is necessary so that decision-makers are presented with an uncertainty range around the impact estimates. This uncertainty is often underexplored owing to the human and computer processing time required to perform the numerous simulations. Here, we present a 189-member ensemble of global river runoff and water resource stress simulations that adequately address this uncertainty. Following several adaptations and modifications, the ensemble creation time has been reduced from 750 h on a typical single-processor personal computer to 9 h of high-throughput computing on the University of Reading Campus Grid. Here, we outline the changes that had to be made to the hydrological impacts model and to the Campus Grid, and present the main results. We show that, although there is considerable uncertainty in both the magnitude and the sign of regional runoff changes across different GCMs with climate change, there is much less uncertainty in runoff changes for regions that experience large runoff increases (e.g. the high northern latitudes and Central Asia) and large runoff decreases (e.g. the Mediterranean). Furthermore, there is consensus that the percentage of the global population at risk to water resource stress will increase with climate change.
Resumo:
The rate and scale of human-driven changes can exert profound impacts on ecosystems, the species that make them up and the services they provide that sustain humanity. Given the speed at which these changes are occurring, one of society's major challenges is to coexist within ecosystems and to manage ecosystem services in a sustainable way. The effect of possible scenarios of global change on ecosystem services can be explored using ecosystem models. Such models should adequately represent ecosystem processes above and below the soil surface (aboveground and belowground) and the interactions between them. We explore possibilities to include such interactions into ecosystem models at scales that range from global to local. At the regional to global scale we suggest to expand the plant functional type concept (aggregating plants into groups according to their physiological attributes) to include functional types of aboveground-belowground interactions. At the scale of discrete plant communities, process-based and organism-oriented models could be combined into "hybrid approaches" that include organism-oriented mechanistic representation of a limited number of trophic interactions in an otherwise process - oriented approach. Under global change the density and activity of organisms determining the processes may change non-linearly and therefore explicit knowledge of the organisms and their responses should ideally be included. At the individual plant scale a common organism-based conceptual model of aboveground-belowground interactions has emerged. This conceptual model facilitates the formulation of research questions to guide experiments aiming to identify patterns that are common within, but differ between, ecosystem types and biomes. Such experiments inform modelling approaches at larger scales. Future ecosystem models should better include this evolving knowledge of common patterns of aboveground-belowground interactions. Improved ecosystem models are necessary toots to reduce the uncertainty in the information that assists us in the sustainable management of our environment in a changing world. (C) 2004 Elsevier GmbH. All rights reserved.
Resumo:
Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase.
Resumo:
Estimating snow mass at continental scales is difficult but important for understanding landatmosphere interactions, biogeochemical cycles and Northern latitudes’ hydrology. Remote sensing provides the only consistent global observations, but the uncertainty in measurements is poorly understood. Existing techniques for the remote sensing of snow mass are based on the Chang algorithm, which relates the absorption of Earth-emitted microwave radiation by a snow layer to the snow mass within the layer. The absorption also depends on other factors such as the snow grain size and density, which are assumed and fixed within the algorithm. We examine the assumptions, compare them to field measurements made at the NASA Cold Land Processes Experiment (CLPX) Colorado field site in 2002–3, and evaluate the consequences of deviation and variability for snow mass retrieval. The accuracy of the emission model used to devise the algorithm also has an impact on its accuracy, so we test this with the CLPX measurements of snow properties against SSM/I and AMSR-E satellite measurements.
Resumo:
Geographic distributions of pathogens are the outcome of dynamic processes involving host availability, susceptibility and abundance, suitability of climate conditions, and historical contingency including evolutionary change. Distributions have changed fast and are changing fast in response to many factors, including climatic change. The response time of arable agriculture is intrinsically fast, but perennial crops and especially forests are unlikely to adapt easily. Predictions of many of the variables needed to predict changes in pathogen range are still rather uncertain, and their effects will be profoundly modified by changes elsewhere in the agricultural system, including both economic changes affecting growing systems and hosts and evolutionary changes in pathogens and hosts. Tools to predict changes based on environmental correlations depend on good primary data, which is often absent, and need to be checked against the historical record, which remains very poor for almost all pathogens. We argue that at present the uncertainty in predictions of change is so great that the important adaptive response is to monitor changes and to retain the capacity to innovate, both by access to economic capital with reasonably long-term rates of return and by retaining wide scientific expertise, including currently less fashionable specialisms.
Resumo:
The possibility of a rapid collapse in the strength of the Atlantic meridional overturning circulation (AMOC), with associated impacts on climate, has long been recognized. The suggested basis for this risk is the existence of two stable regimes of the AMOC (‘on’ and ‘off’), and such bistable behaviour has been identified in a range of simplified climate models. However, up to now, no state-of-the-art atmosphere-ocean coupled global climate model (AOGCM) has exhibited such behaviour, leading to the interpretation that the AMOC is more stable than simpler models indicate. Here we demonstrate AMOC bistability in the response to freshwater perturbations in the FAMOUS AOGCM - the most complex AOGCM to exhibit such behaviour to date. The results also support recent suggestions that the direction of the net freshwater transport at the southern boundary of the Atlantic by the AMOC may be a useful physical indicator of the existence of bistability. We also present new estimates for this net freshwater transport by the AMOC from a range of ocean reanalyses which suggest that the Atlantic AMOC is currently in a bistable regime, although with large uncertainties. More accurate observational constraints, and an improved physical understanding of this quantity, could help narrow uncertainty in the future evolution of the AMOC and to assess the risk of a rapid AMOC collapse.