72 resultados para Ultrasonic technique
Resumo:
The objective of this study was to investigate the potential application of mid-infrared spectroscopy for determination of selected sensory attributes in a range of experimentally manufactured processed cheese samples. This study also evaluates mid-infrared spectroscopy against other recently proposed techniques for predicting sensory texture attributes. Processed cheeses (n = 32) of varying compositions were manufactured on a pilot scale. After 2 and 4 wk of storage at 4 degrees C, mid-infrared spectra ( 640 to 4,000 cm(-1)) were recorded and samples were scored on a scale of 0 to 100 for 9 attributes using descriptive sensory analysis. Models were developed by partial least squares regression using raw and pretreated spectra. The mouth-coating and mass-forming models were improved by using a reduced spectral range ( 930 to 1,767 cm(-1)). The remaining attributes were most successfully modeled using a combined range ( 930 to 1,767 cm(-1) and 2,839 to 4,000 cm(-1)). The root mean square errors of cross-validation for the models were 7.4(firmness; range 65.3), 4.6 ( rubbery; range 41.7), 7.1 ( creamy; range 60.9), 5.1(chewy; range 43.3), 5.2(mouth-coating; range 37.4), 5.3 (fragmentable; range 51.0), 7.4 ( melting; range 69.3), and 3.1 (mass-forming; range 23.6). These models had a good practical utility. Model accuracy ranged from approximate quantitative predictions to excellent predictions ( range error ratio = 9.6). In general, the models compared favorably with previously reported instrumental texture models and near-infrared models, although the creamy, chewy, and melting models were slightly weaker than the previously reported near-infrared models. We concluded that mid-infrared spectroscopy could be successfully used for the nondestructive and objective assessment of processed cheese sensory quality..
Resumo:
The Self-Organizing Map (SOM) is a popular unsupervised neural network able to provide effective clustering and data visualization for multidimensional input datasets. In this paper, we present an application of the simulated annealing procedure to the SOM learning algorithm with the aim to obtain a fast learning and better performances in terms of quantization error. The proposed learning algorithm is called Fast Learning Self-Organized Map, and it does not affect the easiness of the basic learning algorithm of the standard SOM. The proposed learning algorithm also improves the quality of resulting maps by providing better clustering quality and topology preservation of input multi-dimensional data. Several experiments are used to compare the proposed approach with the original algorithm and some of its modification and speed-up techniques.
Resumo:
We present a new methodology that couples neutron diffraction experiments over a wide Q range with single chain modelling in order to explore, in a quantitative manner, the intrachain organization of non-crystalline polymers. The technique is based on the assignment of parameters describing the chemical, geometric and conformational characteristics of the polymeric chain, and on the variation of these parameters to minimize the difference between the predicted and experimental diffraction patterns. The method is successfully applied to the study of molten poly(tetrafluoroethylene) at two different temperatures, and provides unambiguous information on the configuration of the chain and its degree of flexibility. From analysis of the experimental data a model is derived with CC and CF bond lengths of 1.58 and 1.36 Å, respectively, a backbone valence angle of 110° and a torsional angle distribution which is characterized by four isometric states, namely a split trans state at ± 18°, giving rise to a helical chain conformation, and two gauche states at ± 112°. The probability of trans conformers is 0.86 at T = 350°C, which decreases slightly to 0.84 at T = 400°C. Correspondingly, the chain segments are characterized by long all-trans sequences with random changes in sign, rather anisotropic in nature, which give rise to a rather stiff chain. We compare the results of this quantitative analysis of the experimental scattering data with the theoretical predictions of both force fields and molecular orbital conformation energy calculations.
Resumo:
This paper introduces the Hilbert Analysis (HA), which is a novel digital signal processing technique, for the investigation of tremor. The HA is formed by two complementary tools, i.e. the Empirical Mode Decomposition (EMD) and the Hilbert Spectrum (HS). In this work we show that the EMD can automatically detect and isolate tremulous and voluntary movements from experimental signals collected from 31 patients with different conditions. Our results also suggest that the tremor may be described by a new class of mathematical functions defined in the HA framework. In a further study, the HS was employed for visualization of the energy activities of signals. This tool introduces the concept of instantaneous frequency in the field of tremor. In addition, it could provide, in a time-frequency-energy plot, a clear visualization of local activities of tremor energy over the time. The HA demonstrated to be very useful to perform objective measurements of any kind of tremor and can therefore be used to perform functional assessment.
Resumo:
This paper introduces the Hilbert Analysis (HA), which is a novel digital signal processing technique, for the investigation of tremor. The HA is formed by two complementary tools, i.e. the Empirical Mode Decomposition (EMD) and the Hilbert Spectrum (HS). In this work we show that the EMD can automatically detect and isolate tremulous and voluntary movements from experimental signals collected from 31 patients with different conditions. Our results also suggest that the tremor may be described by a new class of mathematical functions defined in the HA framework. In a further study, the HS was employed for visualization of the energy activities of signals. This tool introduces the concept of instantaneous frequency in the field of tremor. In addition, it could provide, in a time-frequency energy plot, a clear visualization of local activities of tremor energy over the time. The HA demonstrated to be very useful to perform objective measurements of any kind of tremor and can therefore be used to perform functional assessment.
Resumo:
Active learning plays a strong role in mathematics and statistics, and formative problems are vital for developing key problem-solving skills. To keep students engaged and help them master the fundamentals before challenging themselves further, we have developed a system for delivering problems tailored to a student‟s current level of understanding. Specifically, by adapting simple methodology from clinical trials, a framework for delivering existing problems and other illustrative material has been developed, making use of macros in Excel. The problems are assigned a level of difficulty (a „dose‟), and problems are presented to the student in an order depending on their ability, i.e. based on their performance so far on other problems. We demonstrate and discuss the application of the approach with formative examples developed for a first year course on plane coordinate geometry, and also for problems centred on the topic of chi-square tests.
Resumo:
Dhaka cheese is a semihard artisanal variety made mainly from bovine milk, using very simple pressing methods. Experimental cheeses were pressed at gauge pressures up to 31 kPa for 12 h at 24 °C and 70% RH. These cheeses were subsequently examined for their compositional, textural and rheological properties plus their microstructures investigated by confocal laser microscopy. The cheese pressed at 15.6 kPa was found to have the best compositional and structural properties.
Resumo:
Flow along rivers, an integral part of many cities, might provide a key mechanism for ventilation – which is important for air quality and heat stress. Since the flow varies in space and time around rivers, there is limited utility in point measurements. Ground-based remote sensing offers the opportunity to study 3D flow in locations which are hard to observe. For three months in the winter and spring of 2011, the atmospheric flow above the River Thames in central London was observed using a scanning Doppler lidar, a dual-beam scintillometer and sonic anemometry. First, an inter-comparison showed that lidar-derived mean wind-speed estimates compare almost as well to sonic anemometers (root-mean-square error (rmse) 0.65–0.68 m s–1) as comparisons between sonic anemometers (0.35–0.73 m s–1). Second, the lidar duo-beam scanning strategy provided horizontal transects of wind vectors comparison with scintillometer rmse 1.12–1.63 m s–1) which revealed mean and turbulent flow across the river and surrounds; in particular: chanelling flow along the river and turbulence changes consistent with the roughness changes between built to river environments. The results have important consequences for air quality and dispersion around urban rivers, especially given that many cities have high traffic rates on bankside roads.
Resumo:
We present a new technique for correcting errors in radar estimates of rainfall due to attenuation which is based on the fact that any attenuating target will itself emit, and that this emission can be detected by the increased noise level in the radar receiver. The technique is being installed on the UK operational network, and for the first time, allows radome attenuation to be monitored using the increased noise at the higher beam elevations. This attenuation has a large azimuthal dependence but for an old radome can be up to 4 dB for rainfall rates of just 2–4 mm/h. This effect has been neglected in the past, but may be responsible for significant errors in rainfall estimates and in radar calibrations using gauges. The extra noise at low radar elevations provides an estimate of the total path integrated attenuation of nearby storms; this total attenuation can then be used as a constraint for gate-by-gate or polarimetric correction algorithms.
Resumo:
A quasi-optical interferometric technique capable of measuring antenna phase patterns without the need for a heterodyne receiver is presented. It is particularly suited to the characterization of terahertz antennas feeding power detectors or mixers employing quasi-optical local oscillator injection. Examples of recorded antenna phase patterns at frequencies of 1.4 and 2.5 THz using homodyne detectors are presented. To our knowledge, these are the highest frequency antenna phase patterns ever recovered. Knowledge of both the amplitude and phase patterns in the far field enable a Gauss-Hermite or Gauss-Laguerre beam-mode analysis to be carried out for the antenna, of importance in performance optimization calculations, such as antenna gain and beam efficiency parameters at the design and prototype stage of antenna development. A full description of the beam would also be required if the antenna is to be used to feed a quasi-optical system in the near-field to far-field transition region. This situation could often arise when the device is fitted directly at the back of telescopes in flying observatories. A further benefit of the proposed technique is simplicity for characterizing systems in situ, an advantage of considerable importance as in many situations, the components may not be removable for further characterization once assembled. The proposed methodology is generic and should be useful across the wider sensing community, e.g., in single detector acoustic imaging or in adaptive imaging array applications. Furthermore, it is applicable across other frequencies of the EM spectrum, provided adequate spatial and temporal phase stability of the source can be maintained throughout the measurement process. Phase information retrieval is also of importance to emergent research areas, such as band-gap structure characterization, meta-materials research, electromagnetic cloaking, slow light, super-lens design as well as near-field and virtual imaging applications.
Resumo:
We describe a one-port de-embedding technique suitable for the quasi-optical characterization of terahertz integrated components at frequencies beyond the operational range of most vector network analyzers. This technique is also suitable when the manufacturing of precision terminations to sufficiently fine tolerances for the application of a TRL de-embedding technique is not possible. The technique is based on vector reflection measurements of a series of easily realizable test pieces. A theoretical analysis is presented for the precision of the technique when implemented using a quasi-optical null-balanced bridge reflectometer. The analysis takes into account quantization effects in the linear and angular encoders associated with the balancing procedure, as well as source power and detector noise equivalent power. The precision in measuring waveguide characteristic impedance and attenuation using this de-embedding technique is further analyzed after taking into account changes in the power coupled due to axial, rotational, and lateral alignment errors between the device under test and the instruments' test port. The analysis is based on the propagation of errors after assuming imperfect coupling of two fundamental Gaussian beams. The required precision in repositioning the samples at the instruments' test-port is discussed. Quasi-optical measurements using the de-embedding process for a WR-8 adjustable precision short at 125 GHz are presented. The de-embedding methodology may be extended to allow the determination of S-parameters of arbitrary two-port junctions. The measurement technique proposed should prove most useful above 325 GHz where there is a lack of measurement standards.
Resumo:
We have carried out experiments to investigate the ageing of latent fingerprints deposited on black PVC over a period of 4-15 weeks. A thumbprint was used in each case and before deposition of the print the donor rubbed their thumb around their nose to add sebaceous deposits. We have studied the effect of heat, light and moisture and we find that moisture is the most significant factor in the degradation of the latent print. We have attempted to enhance these latent prints by dusting with valine powder or powders composed of valine mixed with gold or red fluorescent commercial fingerprint powders. In order to make a direct comparison between “treated” and “untreated” prints, the prints were cut in half with one half being “treated” and one not. Our studies show the best results being obtained when powders of valine and red fluorescent powders are applied prior to cyanoacrylate fuming.