139 resultados para Triclosan-containing Dentifrice
Resumo:
[(VO)-O-IV(acac)(2)] reacts with an equimolar amount of benzoyl hydrazones of 2-hydroxyacetophenone (H2L1), 2-hydroxy-5-methylacetophenone (H2L2) and 5-chloro-2-hydroxyacetophenone (H2L4) in methanol to afford the penta-coordinated mixed-ligand methoxy bonded oxidovanadium(V) complexes [(VO)-O-V(L-1)-(OCHA(3))](1). [(VO)-O-V(L-2)(OCH3)](2), and [(VO)-O-V(L-4)(OCH3)](4), respectively, whereas, the similar reaction with the benzoyl hydrazone of 2-hydroxy-5-methoxyacetophenone (H2L3) producing only the hexa-coordinated dimethoxy-bridged dimeric complex [(VO)-O-V(L-3)(OCH3)](2) (3A). Similar type of hexa-coordinated dimeric analogue of 1 i.e., [(VO)-O-V(L-1)(OCH3)](2) (1A) was obtained from the reaction of [(VO)-O-IV(acac)(2)] with the equimolar amount of H2L1 in presence of half equivalent 4,4'-bipyridine in methanol while the decomposition of [(VO)-O-IV(L-2)(bipy)] complex in methanol afforded the dimeric analogue of 2 i.e., [(VO)-O-V(L-2)(OCH3)](2) (2A). All these dimeric complexes 1A-3A react with an excess amount of imidazole in methanol producing the respective monomeric complex. The X-ray structural analysis of 1-3 and their dimeric analogues 1A-3A indicates that the geometry around the vanadium center in the monomeric form is distorted square-pyramidal while that of their respective dimeric forms is distorted octahedral, where the ligands are bonded to vanadium meridionally in their fully deprotonated enol forms. Due to the formation of bridge, the V-O(methoxy) bond in the dimeric complexes is lengthened to such an extent that it becomes equal in length with the V-O(phenolate) bond in 3A and even longer in 1A and 2A, which is unprecedented. The H-1 NMR spectra of the complexes 1A-3A in CDCl3 solution, indicates that these dimeric complexes are converted appreciably into their respective monomeric form. Complexes are electro-active displaying one quasi-reversible reduction peak near +0.25 V versus SCE in CH2Cl2 solution. The E-1/2 values of the complexes show linear relationship with the Hammett parameter (sigma) of the substituents. All these VO3+-complexes are converted to the corresponding complexes with V2O34+ motif simply on refluxing them in acetone and to the complexes with VO2+ motif on reaction with 2 KOH in methanol. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The orthorhombic crystalline variety (with Pbca space group) of the title complex [V2O3(L)(2)], incorporating the doubly deprotonated tridentate benzoyl hydrazone of 2-hydroxy-5-methylacetophenone has been synthesized from the decomposition of [(VO)-O-IV(L)(bipy)] complex in CH2Cl2 and structurally characterized in contrast to its recently reported monoclinic variety (with C2/c space group) obtained from the reaction of [VO(acac)(2)] with H2L in acetone.
Resumo:
Four trinuclear Cu(II) complexes, [(CuL1)(3)(mu(3)-OH)](NO3)(2) (1), [(CuL2)(3)(mu(3)-OH)](I)(2)center dot H2O (2), [(CuL3)(3)(mu(3)-OH)](I)(2) (3) and [(CuL1)(3)(mu(3)-OH)][(CuI3)-I-1] (4), where HL1 (8-amino-4-methyl-5-azaoct-3-en-2-one), HL2 [7-amino-4-methyl-5-azaoct-3-en-2-one] and HL3 [7-amino-4-methyl-5-azahept-3-en-2- one] are the three tridentate Schiff bases, have been synthesized and structurally characterized by X-ray crystallography. All four complexes contain a partial cubane core, [(CuL)(3)(mu(3)-OH)](2+) in which the three [CuL] subunits are interconnected through two types of oxygen bridges afforded by the oxygen atoms of the ligands and the central OH- group. The copper(II) ions are in a distorted square-pyramidal environment. The equatorial plane consists of the bridging oxygen of the central OH- group together with three atoms (N, N, O) from the Schiff base. The oxygen atom of the Schiff base also coordinates to the axial position of Cu(II) of another subunit to form the cyclic trimer. Magnetic susceptibilities have been determined for these complexes over the temperature range of 2-300 K. The isotropic Hamiltonian, H = -J(12)S(1)S(2) - J(13)S(1)S(3) - J(23)S(2)S(3) has been used to interpret the magnetic data. The best fit parameters obtained are: J = - 54.98 cm(-1) g = 2.24 for 1; J = - 56.66 cm(-1), g = 2.19 for 2; J = -44.39 cm(-1), g = 2.16 for 3; J = - 89.92 cm(-1), g = 2.25 for 4. The EPR data at low temperature indicate that the phenomenon of spin frustration occurs for complexes 1-3. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Five new thioantimonates have been synthesized in the presence of organic amines under solvothermal conditions and their structures determined by single-crystal X-ray diffraction. All of the compounds are layered and contain antimony-sulphide anions of stoichiometry [Sb4S7](2-), but the structure of the anion formed is dependent on the amine used in synthesis. (H3N(CH2)(4)NH3)[Sb4S7] (1) contains [Sb4S7](2-) double chains directed along [010]. Weak interchain Sb-S interactions between neighbouring chains cause the double chains to pack into layers in the ab plane. In the [001] direction, the layers of double chains alternate with doubly protonated diaminobutane molecules to which the chains are hydrogen bonded. Compounds of general formula (TH)(2)[Sb4S7] (T= CH3(CH2)(2)NH2 (2), (CH3)(2)CHNH2 (3), CH3(CH2)(3)NH2 (4) and CH3(CH2)(4)NH2 (5)) adopt a more complex structure in which [Sb3S8](7-) units are linked by Sb-3(3-) pyramids to form chains, which in turn are bridged by sulphur atoms to create sheets containing large heterorings. Pairs of such sheets form double layers of four atoms thickness that are stacked along [001]. Protonated amine molecules are located between anionic antimony-sulphide layers to which they are hydrogen bonded. Thermal analysis reveals that the decomposition temperature of materials containing [Sb4S7](2-) anions is dependent both on the structure of the anion, the lowest decomposition temperature being that of the low-dimensional phase (1) and on the identity of the amine, the decomposition temperature decreasing with an increasing number of carbon atoms and decreasing density. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The reaction of FcCOC1 (Fc = (C5H5) Fe(C5H4)) with benzimidazole or imidazole in 1: 1 ratio gives the ferrocenyl derivatives FcCO(benzim) (L1) or FcCO(im) (L2), respectively. Two molecules of L1 or L2 can replace two nitrile ligands in [Mo(eta(3)-C3H5)( CO)(2)(CH3CN)(2)Br] or [Mo(eta(3)-C5H5O)(CO)(2)(CH3CN)(2)Br] leading to the new trinuclear complexes [Mo(eta(3)-C3H5)(CO)(2)(L)(2)Br] (C1 for L = L1; C3 for L = L2) and [Mo(eta(3)-C5H5O)(CO)(2)(L)(2)Br] (C-2 for L = L1; C4 for L = L2) with L1 and L2 acting as N-monodentade ligands. L1, L2 and C2 were characterized by X-ray diffraction studies. [Mo(eta(3)-C5H5O)(CO) 2(L1)(2)Br] was shown to be a trinuclear species, with the two L1 molecules occupying one equatorial and one axial position in the coordination sphere of Mo(II). Cyclic voltammetric studies were performed for the two ligands L1 and L2, as well as for their molybdenum complexes, and kinetic and thermodynamic data for the corresponding redox processes obtained. In agreement with the nature of the frontier orbitals obtained from DFT calculations, L1 and L2 exhibit one oxidation process at the Fe(II) center, while C1, C3, and C4 display another oxidation wave at lower potentials, associated with the oxidation of Mo(II). (C) 2007 Elsevier B. V. All rights reserved.
Resumo:
Four new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (1), [(CuL2)(3)(mu(3)-OH)](CIO4)(2) (2), [(CuL3)(3)-(mu(3)-OH)](ClO4)(4)center dot H2O (3), and [(CuL4)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (4), where HL1 = 8-amino-4,7,7-trimethyl-5-azaoct-3-en-2-one, HL2 = 7-amino-4-methyl-5-azaoct-3-en-2-one, HL3 = 7(ethylamino)-4-methyl-5-azahept-3-en-2-one, and HL4 = 4-methyl-7-(methylamino)-5-azahept-3-en-2-one, have been derived from the four tridentate Schiff bases (HL1, HL2, HL3, and HL4) and structurally characterized by X-ray crystallography. For all compounds, the cationic part is trinuclear with a CU3OH core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with a distorted square-pyramidal geometry; the equatorial plane consists of the bridging oxygen atom of the central OH group together with three atoms (N, N, O) from one ligand whereas an oxygen atom of a second ligand occupies the axial position. Magnetic measurements have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2+S2S3+S1S3) yielding as best-fit parameters: J = -66.7 and g = 2.19 for 1, J = -36.6 and g = 2.20 for 2, J = -24.5 and g = 2.20 for 3, and J = -14.9 and g = 2.05 for 4. EPR spectra at low temperature show the existence of spin frustration in complexes 3 and 4, but it has not been possible to carry out calculations of the antisymmetric exchange parameter, G, from magnetic data. In frozen methanolic solution, at 4 K, hyperfine splitting in all complexes and spin frustration in complex 4 seem to be confirmed. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)
Resumo:
Three terminally protected tripeptides Boc-gamma-Abu-Val-Leu-OMe 1, Boc-gamma-Abu-Leu-Phe-OMe 2 and Boc-gamma-Abu-Val-Tyr-OMe 3 (gamma-Abu = gamma-aminobutyric acid) each containing an N-terminally positioned gamma-aminobutyric acid residue have been synthesized, purified and studied. FT-IR studies of all these peptides revealed that these peptides form intermolecularly hydrogen bonded supramolecular beta-sheet structures. Peptides 1, 2 and 3 adopt extended backbone beta-strand molecular structures in crystals. Crystal packing of all these peptides demonstrates that these beta-strand structures self-assemble to form intermolecularly H-bonded parallel beta-sheet structures. Peptide 3 uses a side chain tyrosyl -OH group as an additional hydrogen bonding functionality in addition to the backbone CONH groups to pack in crystals. Transmission electron microscopic studies of all peptides indicate that they self-assemble to form nanofibrillar structures of an average diameter of 65 nm. These peptide fibrils exhibit amyloid-like behavior as they bind to a physiological dye Congo red and show a characteristic green-gold birefringence under polarizing microscope.
Resumo:
Low doses of gamma radiation were given to four different solvents containing C5-BTBP and CyMe4-BTBP, each molecule dissolved both in cyclohexanone and hexanol. Four corresponding solvents were kept unirradiated and used as references for the extraction experiments. Multiple samples were taken from both the irradiated solutions and the reference solutions at certain time intervals. The samples were used in extraction experiments with the radionuclides Am-241 and Eu-152. The protection against radiolysis of the extracting molecules by the diluent used for dissolution without adding a scavenger molecule was checked. The interplay between the diluent and the side group of the extracting molecule for protection against radiolysis was also studied by keeping the same type of core molecule for binding to the metal ions and varying the diluent and side group. The results were unexpected. The presence of a cyclic molecule as both a side group or diluent seems to keep the extraction of europium almost unaffected by radiolysis, while americium behaves differently from solvent to solvent. The diluent alone does not protect the extracting molecule. In some of the studied systems there is a distinct change in the extraction behaviour of Am between the irradiated and reference solutions, an effect that is however only present at the beginning of the experimental series. At later times the difference in distribution ratios between the irradiated and reference solution is constant. This phenomenon is found only when the side group and diluent are structurally dissimilar.
Resumo:
Two tridentate Schiff bases, HL1(6-amino-3-methyl-1-phenyl-4-azahex-2-en-1-one), and HL2 (6-atnino-3,6-dimethyl-1-phenyl-4-azahex-2-en-1-one) on reaction with Cu(II) perchlorate in the presence of triethyl amine yielded two new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2) (1) and [(CuL2)(3)(mu(3)-OH)](ClO4)(2) center dot 0.75H(2)O (2), whereas another tridentate ligand HL3 (7-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one) underwent hydrolysis under the same reaction conditions to result in the formation of a mononuclear complex, [Cu(bn)(pn)ClO4] (3) [where bn = 1-benzoylacetonate and pn = 1,3-propanediamine]. All three complexes have been characterized by X-ray crystallography. For both 1 and 2 the cationic part is trinuclear with a [Cu3OH] core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The structure of 3 is a monomer with a chelating 1,3-propanediamine and a benzoyl acetone moiety. Magnetic measurements of I and 2 have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2 + S2S3 + S1S3), yielding as best fit parameters: J = -25.6 cm(-1), g = 2.21 for 1 and J = 11.2 cm(-1), g = 2.10 for 2. The EPR spectra at low temperature could be indicative of spin frustration in complex 1. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Reaction of the tridentate ONO Schiff-base ligand 2-hydroxybenzoylhydrazone of 2-hydroxybenzoylhydrazine (H2L) with VO(acac)(2) in ethanol medium produces the oxoethoxovanadium(V) complex [VO(OEt)L] (A), which reacts with pyridine to form [VO(OEt)L center dot(py)] (1). Complex 1 is structurally characterized. It has a distorted octahedral O4N2 coordination environment around the V(V) acceptor center. Both complexes A and 1 in ethanol medium react with neutral monodentate Lewis bases 2-picoline, 3-picoline, 4-picoline, 4-amino pyridine, imidazole, and 4-methyl imidazole, all of which are stronger bases than pyridine, to produce dioxovanadium(V) complexes of general formula BH[VO2L]. Most of these dioxo complexes are structurally characterized, and the complex anion [VO2L](-) is found to possess a distorted square pyramidal structure. When a solution/suspension of a BH[VO2L] complex in an alcohol (ROH) is treated with HCl in the same alcohol, it is converted into the corresponding monooxoalkoxo complex [ O(OR)L], where R comes from the alcohol used as the reaction medium. Both complexes A and 1 produce the 4,4'-bipyridine-bridged binuclear complex [VO(OEt)L](2)(mu-4,4'-bipy) (2), which, to the best of our knowledge, represents the first report of a structurally characterized 4,4'-bipyridine-bridged oxovanadium(V) binuclear complex. Two similar binuclear oxovanadium(V) complexes 3 and 4 are also synthesized and characterized. All these binuclear complexes (2-4), on treatment with base B, produce the corresponding mononuclear dioxovanadium(V) complexes (5-10).
Resumo:
The adsorption of L-CySteine and L-methionine amino acids on a chiral Cu{5 3 1} surface was investigated with high resolution X-ray photoelectron spectroscopy (XPS) and carbon K-edge near edge X-ray absorption fine structure (NEXAFS) Spectroscopy using synchrotron radiation. XPS shows that at 300 K L-cysteine adsorbs through two oxygen, a nitrogen and a sulfur atom, in a four point 'quadrangular footprint', whereas L-methionine adsorbs through only two oxygen and a nitrogen atom in a 'triangular footprint'. NEWS was used to clarify the adsorption geometry of both molecules, which suggests a binding orientation to the top layer and second layer atoms in two different orientations associated with adsorption sites on {1 1 0} and {3 1 1} microfacets; of the Cu{5 3 1} surface. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Using the 1:2 condensate (L) of diethylenetriamine and benzaldehyde as the main ligand, binuclear copper(l) complexes [Cu2L2(4,4'-bipyridine)](CIO4)(2).0.5H(2)O (1a) and [Cu2L2(1,2-bis(4-pyridyl)ethane)](CIO4)(2) (1b) are synthesised. The two metal ions in la are bridged by 4,4'-bipyridine and those in 1b by 1,2-bis(4-pyridyl)ethane, From the X-ray crystal structure of la, each metal ion is found to be bound to three N atoms of L and one of the two N atoms of the bridging ligand in a distorted tetrahedral fashion. The Cu(I)-N bond lengths in la lie in the range of 1.998(5)-2.229(6) Angstrom. Electrochemical studies in dichloromethane (DCM) show that the (Cu2N8)-N-I moieties in la and 1b are composed of two essentially non-interacting (CuN4)-N-I cores with Cu-II/I potential of 0.44 V vs. SCE. While la displays metal induced quenching of the inherent emission of 4,4'-bipyridine in DCM solution, 1b exhibits two weak emission bands in DCM solution at 425 and 477 nm (total quantum yield = 3.59 x 10(-5)) originating from MLCT excited states. With the help of Extended Huckel calculations it is established that the higher energy emission in 1b is from Cu(I) --> bridging-ligand charge transfer excited state and the lower energy one in 1b from Cu(I) --> L charge transfer excited state.
Resumo:
Carbohydrate-derived substrates having (i) C-5 nitrone and C-3-O-allyl, (ii) C-4 vinyl and a C-3-O-tethered nitrone, and (iii) C-5 nitrone and C-4-allyloxymethyl generated tetracyclic isoxazolidinooxepane/-pyrart ring systems upon intramolecular nitrone cycloaddition reactions. Deprotection of the 1,2acetonides of these derivatives followed by introduction of uracil base via Vorbruggen reaction condition and cleavage of the isooxazolidine rings as well as of benzyl groups by transfer hydrogenolysis yielded an oxepane ring containing blicyclic and spirocyclic nucleosides. The corresponding oxepane based nucleoside analogues were prepared by cleavage of isoxazolidine and furanose rings, coupling of the generated amino functiontalities with 5-amino-4,6-dichloropyrimidine, cyclization to purine rings, and finally aminolysis.
Resumo:
Stabilized nano-sized water droplet carrying water-soluble Co2+ species is employed as a new catalyst system for the oxidation of the alkyl aromatics in the presence of a fluorinated surfactant. This stable system contains no labile C-H structure and can facilitate excellent mixing of catalytic Co(II)/NaBr species, hydrocarbon substrates and oxygen in supercritical carbon dioxide fluid, which is demonstrated to be an excellent alternative solvent system to acetic acid or nitric acid for air oxidation of a number of alkyl aromatic hydrocarbons using Co(II) species at mild conditions. As a result, potential advantages of this 'greener' catalytic method including safer operation, easier separation and purification, higher catalytic activity with selectivity and without using corrosive or oxidation unstable solvent are therefore envisaged.
Resumo:
A new chromium-antimony-sulfide, [Cr(C6H18N4)(SbS3)], has been synthesised under solvothermal conditions from CrCl3. 6H(2)O, Sb2S3 and S in the presence of triethylenetetramine at 433 K and characterised by single-crystal X-ray diffraction, thermogravimetry, elemental analysis and SQUID magnetometry. The structure of [Cr(C6H18N4)(SbS3)] consists of neutral mononuclear chromium-centred complexes, in which the Cr3+ is chelated by one tetradentate triethylenetetramine molecule and a bidentate SbS33- ligand, yielding distorted octahedral coordination. Intermolecular hydrogen bonds link individual molecules into layers within the ac plane. Within a layer, molecules occur in pairs with each member related by a centre of inversion. The Cr...Cr separation within a pair is approximately 6.5 Angstrom. Magnetic susceptibility data reveal Curie-Weiss behaviour with mu(eff) = 3.819(3)/mu(B) and a negligible Weiss constant, indicative of non-interacting Cr3+ ions. (C) 2003 Elsevier Science Ltd. All rights reserved.