121 resultados para Transgenic crops


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Critics of genetically modified (GM) crops often contend that their introduction enhances the gap between rich and poor farmers, as the former group are in the best position to afford the expensive seed as well as provide other inputs such as fertilizer and irrigation. The research reported in this paper explores this issue with regard to Bt cotton (cotton with the endotoxtin gene from Bacillus thuringiensis conferring resistance to some insect pests) in Jalgaon, Maharashtra State, India, spanning the 2002 and 2003 seasons. Questionnaire–based survey results from 63 non–adopting and 94 adopting households of Bt cotton were analyzed, spanning 137 Bt cotton plots and 95 non–Bt cotton plots of both Bt adopters and non–adopters. For these households, cotton income accounted for 85 to 88% of total household income, and is thus of vital importance. Results suggest that in 2003 Bt adopting households have significantly more income from cotton than do non–adopting households (Rp 66,872 versus Rp 46,351) but inequality in cotton income, measured with the Gini coefficient (G), was greater amongst non–adopters than adopters. While Bt adopters had greater acreage of cotton in 2003 (9.92 acres versus 7.42 for non–adopters), the respective values of G were comparable. The main reason for the lessening of inequality amongst adopters would appear to be the consistency in the performance of Bt cotton along with the preferred non–Bt cultivar of Bt adopters—Bunny. Taking gross margin as the basis for comparison, Bt plots had 2.5 times the gross margin of non–Bt plots of non–adopters, while the advantage of Bt plots over non–Bt plots of adopters was 1.6 times. Measured in terms of the Gini coefficient of gross margin/acre it was apparent that inequality was lessened with the adoption of Bunny (G = 0.47) and Bt (G = 0.3) relative to all other non–Bt plots (G = 0.63). Hence the issue of equality needs to be seen both in terms of differences between adopters and non–adopters as well as within each of the groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data from 60 multiparous Holstein cows were used in a 12-wk continuous design feeding trial. Cows were allocated to 1 of 4 experimental treatments (T1 to T4). In T1 and T2, the total mixed ration (TMR) contained either corn silage from the genetically modified (GM) variety Chardon Liberty Link, which is tolerant to the herbicide glufosinate ammonium, or its near isogenic nonGM counterpart, whereas the TMR used in T3 and T4 contained corn silage from the commercially available nonGM varieties Fabius and Antares, respectively. The objectives of the study were to determine if the inserted gene produced a marked effect on chemical composition, nutritive value, feed intake, and milk production, and to determine if transgenic DNA and the protein expressed by the inserted gene could be detected in bovine milk. The nutritive value, fermentation characteristics, mineral content, and amino acid composition of all 4 silages were similar. There were no significant treatment effects on milk yield, milk composition, and yield of milk constituents, and the dry matter (DM) intake of the GM variety was not significantly different from the 2 commercial varieties. However, although the DM intake noted for the nonGM near-isogenic variety was similar to the commercial varieties, it was significantly lower when compared with the GM variety. Polymerase chain reaction analyses of milk samples collected at wk 1, 6, and 12 of the study showed that none of the 90 milk samples tested positive, above a detection limit of 2.5 ng of total genomic DNA/mL of milk, for either tDNA (event T25) or the single-copy endogenous Zea mays gene, alcohol dehydrogenase. Using ELISA assays, the protein expressed by the T25 gene was not detected in milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper empirically investigates how the productivity of pesticide differs in Bt versus non-Bt technology for South African cotton smallholders, and what the implications for pesticide use levels are in the two technologies. This is accomplished by applying a damage control framework to farm-level data from Makhathini flats, KwaZulu-Natal. Contrary to findings elsewhere, notably China, that farmers over-use pesticides and that transgenic technology benefits farmers by enabling large reductions in pesticide use, the econometric evidence here indicates that non-Bt smallholders in South Africa under-use pesticide. Thus, the main potential contribution of the new technology is to enable them to realise lost productivity resulting from under-use. By providing a natural substitute for pesticide, the Bt technology enables the smallholders to circumvent credit and labour constraints associated with pesticide application. Thus, the same technology that greatly reduces pesticide applications but only mildly affects yields, when used by large-scale farmers in China and elsewhere, benefits South-African smallholder farmers primarily via a yield-enhancing effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the predation behaviour of the "hunter fly" (Coenosia attenuata Stein) in the laboratory and greenhouse. In the laboratory, which was conducted at 25 degrees C at 60-80% RH, with a 16L : 8D photoperiod, we examined the functional response of this species to three different pests, namely the sciarid fly (Bradysia sp.), the tobacco whitefly (Bemisia tabaci) and the leaf miner Liriomyza trifolii. In the greenhouse, we studied the population dynamics of the predator and its prey on pepper and water melon crops grown in southern Spain. Adult hunter flies were found to exhibit a type I functional response to adult sciarid flies and whiteflies, but a type II response to adult leaf miners. The type II response was a result of the greater difficulty in capturing and handling leaf miners compared to the other two species. The dynamics of the predator-prey interaction in the greenhouse revealed that the predator specializes mainly on adult sciarids and that the presence of the other prey can be supplemental, but is never essential for survival of the predator; this, however, is crop-dependent. The results oil the dynamics of the predator-prey systems were obtained through a known population dynamics model with modifications.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in both the mean and the variability of climate, whether naturally forced, or due to human activities, pose a threat to crop production globally. This paper summarizes discussions of this issue at a meeting of the Royal Society in April 2005. Recent advances in understanding the sensitivity of crops to weather, climate and the levels of particular gases in the atmosphere indicate that the impact of these factors on crop yields and quality may be more severe than previously thought. There is increasing information on the importance to crop yields of extremes of temperature and rainfall at key stages of crop development. Agriculture will itself impact on the climate system and a greater understanding of these feedbacks is needed. Complex models are required to perform simulations of climate variability and change, together with predictions of how crops will respond to different climate variables. Variability of climate, such as that associated with El Niño events, has large impacts on crop production. If skilful predictions of the probability of such events occurring can be made a season or more in advance, then agricultural and other societal responses can be made. The development of strategies to adapt to variations in the current climate may also build resilience to changes in future climate. Africa will be the part of the world that is most vulnerable to climate variability and change, but knowledge of how to use climate information and the regional impacts of climate variability and change in Africa is rudimentary. In order to develop appropriate adaptation strategies globally, predictions about changes in the quantity and quality of food crops need to be considered in the context of the entire food chain from production to distribution, access and utilization. Recommendations for future research priorities are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extensive study was conducted to determine where in the production chain Rhizoctonia solani became associated with UK module-raised Brassica oleracea plants. In total, 2600 plants from 52 crops were sampled directly from propagators and repeat sampled from the field. Additional soil, compost and water samples were collected from propagation nurseries and screened using conventional agar isolation methods. No isolates of R. solani were recovered from any samples collected from propagation nurseries. Furthermore, nucleic acid preparations from samples of soil and compost from propagation nurseries gave negative results when tested for R. solani using real-time PCR. Conversely, R. solani was recovered from 116 of 1300 stem bases collected from field crops. All the data collected suggested R. solani became associated with B. oleracea in the field rather than during propagation. Parsimony and Bayesian phylogenetic studies of ribosomal DNA suggested the majority of further classified isolates belonged to anastomosis groups 2-1 (48/57) and AG-4HGII (8/57), groups known to be pathogenic on Brassica spp. in other countries. Many R. solani isolates were recovered from symptomless plant material and the possibilities for such an association are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mediterranean region is one of the major centres of origin and diversification of cultivated plants and many crop wild relatives are found there. In addition, many native species are still widely harvested from the wild for food, medicine and other uses and some of these have potential for development as alternative crop especially in marginal zones. While there have been several recent initiatives that address the cataloguing and conservation of these species, such as the Network on Identification, Conservation and Use of Wild Plants in the Mediterranean Region (MEDUSA and the Bioversity International (IPGRI) studies on Underutilized Mediterranean Species (VMS), no comprehensive assessment has yet been made and little work undertaken on their agricultural potential. It has been confidently predicted that consequences of global change in the Mediterranean region - population movements and migrations, changes in disturbance regimes, and climate change - will be serious. One the one hand, this will affect the survival prospects of many of these underutilized species and on the other hand it will enhance their importance as the source of potential new crop germplasm. The conservation and availability of genetic diversity of both crops and underutilized species is essential if we are to be able to meet the increasing demand for food and other crops that will be adapted to the new ecoclimatic envelopes that will develop in the region as a consequence of global change. The rapid rate of climatic and other change that is expected adds urgency to the task of assessing, conserving and sustainably using this rich diversity of wild species of economic value in the region but new strategies will be need to be developed to achieve this. The Mediterranean region has the potential of becoming a major source of new crop development in the coming decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the recurring themes in any discussion concerning the application of genetic transformation technology is the role of Intellectual Property Rights (IPR). This term covers both the content of patents and the confidential expertise, usually related to methodology and referred to as “Trade Secrets”. This review will explain the concepts behind patent protection, and will discuss the wide-ranging scope of existing patents that cover all aspects of transgenic technology, from selectable markers and novel promoters to methods of gene introduction. Although few of these patents have any significant commercial value, there are a small number of key patents that may restrict the “freedom to operate” of any company seeking to exploit the methods. Over the last twenty years, these restrictions have forced extensive cross-licensing between ag-biotech companies and have been one of the driving forces behind the consolidation of these companies. Although such issues are often considered to be of little interest to the academic scientist working in the public sector, they are of great importance in any debate about the role of “public-good breeding” and of the relationship between the public and private sectors.