91 resultados para Thermoplastic starch


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isolates of Armillaria mellea and A. gallica that differed in virulence to healthy blackcurrant, strawberry, Lawson cypress and privet were used to inoculate plants exposed to different watering regimes. Host plants from which water had either been withheld or their roots kept constantly flooded with water, both showed increased susceptibility compared to those plants, which had been watered regularly. At the end of the period of stress, roots from randomly selected plants from each treatment were harvested. Following chemical analysis of the roots for protein, lipids, and carbohydrates including starch, in vitro assays were carried out with these substances. The increased amounts of these nutrients in both groups of stressed plants are sufficient to stimulate the growth of both A. mellea and A. gallica and enhance their virulence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigation of the fracture mode for hard and soft wheat endosperm was aimed at gaining a better understanding of the fragmentation process. Fracture mechanical characterization was based on the three-point bending test which enables stable crack propagation to take place in small rectangular pieces of wheat endosperm. The crack length can be measured in situ by using an optical microscope with light illumination from the side of the specimen or from the back of the specimen. Two new techniques were developed and used to estimate the fracture toughness of wheat endosperm, a geometric approach and a compliance method. The geometric approach gave average fracture toughness values of 53.10 and 27.0 J m(-2) for hard and soft endosperm, respectively. Fracture toughness estimated using the compliance method gave values of 49.9 and 29.7 J m(-2) for hard and soft endosperm, respectively. Compressive properties of the endosperm in three mutually perpendicular axes revealed that the hard and soft endosperms are isotropic composites. Scanning electron microscopy (SEM) observation of the fracture surfaces and the energy-time curves of loading-unloading cycles revealed that there was a plastic flow during crack propagation for both the hard and soft endosperms, and confirmed that the fracture mode is significantly related to the adhesion level between starch granules and the protein matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic rheological techniques can aid the understanding of the factors contributing to ice cream structure, though the data obtained differs from that deduced from destructive techniques. Studies have shown that ice cream systems are both strain- and frequency-dependent. Chocolate ice cream is normally more viscous than the equivalent vanilla ice cream during mix preparation and has more body on freezing. Ice creams were prepared with and without cocoa solids and frequency sweeps were made from 0.1 to 100 Hz at 0.1% strain. With rapidly frozen ice creams, both G' and G" increased in the presence of cocoa solids. Comparison of mixes made with and without low-fat cocoa powder or non-gelatinizing starch demonstrated a similar relationship, with higher apparent viscosities in those mixes containing either cocoa powder or the starch. The results were consistent with the cocoa particles adding to the effect of the fat globules in increasing viscosity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rheological properties of dough and gluten are important for end-use quality of flour but there is a lack of knowledge of the relationships between fundamental and empirical tests and how they relate to flour composition and gluten quality. Dough and gluten from six breadmaking wheat qualities were subjected to a range of rheological tests. Fundamental (small-deformation) rheological characterizations (dynamic oscillatory shear and creep recovery) were performed on gluten to avoid the nonlinear influence of the starch component, whereas large deformation tests were conducted on both dough and gluten. A number of variables from the various curves were considered and subjected to a principal component analysis (PCA) to get an overview of relationships between the various variables. The first component represented variability in protein quality, associated with elasticity and tenacity in large deformation (large positive loadings for resistance to extension and initial slope of dough and gluten extension curves recorded by the SMS/Kieffer dough and gluten extensibility rig, and the tenacity and strain hardening index of dough measured by the Dobraszczyk/Roberts dough inflation system), the elastic character of the hydrated gluten proteins (large positive loading for elastic modulus [G'], large negative loadings for tan delta and steady state compliance [J(e)(0)]), the presence of high molecular weight glutenin subunits (HMW-GS) 5+10 vs. 2+12, and a size distribution of glutenin polymers shifted toward the high-end range. The second principal component was associated with flour protein content. Certain rheological data were influenced by protein content in addition to protein quality (area under dough extension curves and dough inflation curves [W]). The approach made it possible to bridge the gap between fundamental rheological properties, empirical measurements of physical properties, protein composition, and size distribution. The interpretation of this study gave indications of the molecular basis for differences in breadmaking performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fractionation and reconstitution techniques were used to study the contribution of endogenous flour lipids to the quality of short-dough (shortcake type) biscuits. Biscuit flour was defatted with chloroform and baked with bakery fat, but without endogenous lipid. Short-dough biscuits baked from defatted flour had smaller diameters, and were flatter, denser and harder than control biscuits. Defatted flour shortcake doughs exhibited different rheological behaviour from the control samples, showing higher storage and loss moduli (G' and G" values), ie higher viscoelasticity. Functionality was restored when total non-starch flour lipids were added back to defatted flour. The polar lipid fraction had a positive effect in restoring flour quality whereas the non-polar lipid fraction had no effect. Both fractions were needed for complete restoration of both biscuit quality and dough rheological characteristics. A study of the microstructure of defatted biscuits revealed that their gluten protein was more hydrated and developed than the gluten of the control biscuits. This conclusion was supported by the higher water absorption of the defatted gluten. (C) 2004 Society of Chemical Industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fermentation properties of oligosaccharides derived from orange peel pectin were assessed in mixed fecal bacterial culture. The orange peel oligosaccharide fraction contained glucose in addition to rhamnogalacturonan and xylogalacturonan pectic oligosaccharides. Twenty-four-hour, temperature- and pH-controlled, stirred anaerobic fecal batch cultures were used to determine the effects that oligosaccharides derived from orange products had on the composition of the fecal microbiota. The effects were measured through fluorescent in situ hybridization to determine changes in bacterial populations, fermentation end products were analyzed by high-performance liquid chromatography to assess short-chain fatty acid concentrations, and subsequently, a prebiotic index (PI) was determined. Pectic oligosaccharides (POS) were able to increase the bifidobacterial and Eubacterium rectale numbers, albeit resulting in a lower prebiotic index than that from fructo-oligosaccharide metabolism. Orange albedo maintained the growth of most bacterial populations and gave a PI similar to that of soluble starch. Fermentation of POS resulted in an increase in the Eubacterium rectale numbers and concomitantly increased butyrate production. In conclusion, this study has shown that POS can have a beneficial effect on the fecal microflora; however, a classical prebiotic effect was not found. An increase in the Eubacterium rectale population was found, and butyrate levels increased, which is of potential benefit to the host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface properties of gluten proteins were measured in a dilation test and in compression and expansion tests. The results showed that monomeric gliadin was highly surface active, but polymer glutenin had almost no surface activity. The locations of those proteins in bread dough were investigated using confocal scanning laser microscopy and compared with polar and nonpolar lipids. Added gluten proteins participated in the formation of the film or the matrix, surrounding and separating individual gas cells in bread dough. Gliadin was found in the bulk of dough and gas 'cell walls'. Glutenin was found only in the bulk dough. Polar lipids were present in the protein matrix and in gas 'cell walls', as well as at the surface of some particles, which appeared to be starch granules. However, nonpolar lipid mainly occur-red on the surface of particles, which may be starch granules and small lipid droplets. It is suggested that the locations of gluten proteins in bread dough depends on their surface properties. Polar lipid participates the formation of gluten protein matrix and gas 'cell walls'. Nonpolar lipids may have an effect on the rheological properties by associating with starch granule surfaces and may form lipid droplets. (C) 2004 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of different sugars and glyoxal on the formation of acrylamide in low-moisture starch-based model systems was studied, and kinetic data were obtained. Glucose was more effective than fructose, tagatose, or maltose in acrylamide formation, whereas the importance of glyoxal as a key sugar fragmentation intermediate was confirmed. Glyoxal formation was greater in model systems containing asparagine and glucose rather than fructose. A solid phase microextraction GC-MS method was employed to determine quantitatively the formation of pyrazines in model reaction systems. Substituted pyrazine formation was more evident in model systems containing fructose; however, the unsubstituted homologue, which was the only pyrazine identified in the headspace of glyoxal-asparagine systems, was formed at higher yields when aldoses were used as the reducing sugar. Highly significant correlations were obtained for the relationship between pyrazine and acrylamide formation. The importance of the tautomerization of the asparagine-carbonyl decarboxylated Schiff base in the relative yields of pyrazines and acrylamide is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistant starch type 2 (RS2) and type 3 (RS3) containing preparations were digested using a batch (a) and a dynamic in vitro model (b). Furthermore, in vivo obtained indigestible fractions from ileostomy patients were used (c). Subsequently these samples were fermented with human feces with a batch and a dynamic in vitro method. The fermentation supernatants were used to treat CAC02 cells. Cytotoxicity, anti-genotoxicity against hydrogen peroxide (comet assay) and the effect on barrier function measured by trans-epithelial electrical resistance were determine. Dynamically fermented samples led to high cytotoxic activity, probably due to additional compounds added during in vitro fermentation. As a consequence only batch fermented samples were investigated further. Batch fermentation of RS resulted in an anti-genotoxic activity ranging from 9-30% decrease in DNA damage for all the samples, except for RS2-b. It is assumed that the changes in RS2 structures due to dynamic digestion resulted in a different fermentation profile not leading to any anti-genotoxic effect. Additionally, in vitro batch fermentation of RS caused an improvement in integrity across the intestinal barrier by approximately 22% for all the samples. We have demonstrated that batch in vitro fermentation of RS2 and RS3 preparations differently pre-digested are capable of inhibiting the initiation and promotion stage in colon carcinogenesis in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oil-absorption capacity of different restructured potato chips during deep-fat frying was investigated. Low-leach potato flake was chosen as the major ingredient, whereas native and pregelatinized potato starches were studied as complementary ingredients. Results showed that off absorption increased significantly when reducing product thickness in all products. Interestingly, it was found that the product containing native potato starch as an ingredient picked up the lowest amount of on when sheeted into a thick chip, whereas it absorbed the largest amount of oil when sheeted into a thin chip. Those findings were mainly attributed to crust microstructure development as revealed by electron microscopy and confocal microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutinous rice (or sticky rice) has to be soaked in water over an extended period of time before cooking. Soaking provides some of the water needed for starch gelatinisation to occur during cooking. The extent of water uptake during soaking is known to be influenced by temperature. This paper explores the use of very high pressures up to 600 MPa to accelerate water uptake kinetics during soaking. Changes occurring in length, diameter and moisture content were determined as a function of soaking time, pressure and temperature. The results show that length and diameter are positively correlated with all three parameters. However, the expansion ratios are not very high: the maximum length expansion ratio observed was 1.2, while the maximum diameter expansion ratio was 1. 1. Given these low values, it was possible to model water uptake kinetics by using the well-known Fickian model applied to a finite cylinder, assuming uniform average dimensions and effective diffusion coefficient. The results showed that the overall rates of water uptake and the equilibrium moisture content increased with pressure and temperature. The effective diffusion coefficient, on the other hand, did not follow the same trend. Temperature influenced the effective diffusion coefficient below 300 MPa, but had a marginal effect at higher pressures. Moreover, the effective diffusion coefficient increased with temperature between 20 and 50 degrees C, but dropped at higher temperatures. This drop can be attributed to the gelatinisation of starch, which restricts the transport of water. Regardless, it is possible to increase the quantity of water absorbed by rice and the rate at which it is absorbed, by using high pressures and temperatures. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidemiological studies and healthy eating guidelines suggest a positive correlation between ingestion of whole grain cereal and food rich in fibre with protection from chronic diseases. The prebiotic potential of whole grains may be related, however, little is known about the microbiota modulatory capability of oat grain or the impact processing has on this ability. In this study the fermentation profile of whole grain oat flakes, processed to produce two different sized flakes (small and large), by human faecal microbiota was investigated in vitro. Simulated digestion and subsequent fermentation by gut bacteria was investigated using pH controlled faecal batch cultures inoculated with human faecal slurry. The different sized oat flakes, Oat 23’s (0.53–0.63 mm) and Oat 25’s/26’s (0.85–1.0 mm) were compared to oligofructose, a confirmed prebiotic, and cellulose, a poorly fermented carbohydrate. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation, and short chain fatty acid (SCFA) production monitored by gas chromatography. Significant changes in total bacterial populations were observed after 24 h incubation for all substrates except Oat 23’s and cellulose. Oats 23’s fermentation resulted in a significant increase in the Bacteroides–Prevotella group. Oligofructose and Oats 25’s/26’s produced significant increases in Bifidobacterium in the latter stages of fermentation while numbers declined for Oats 23’s between 5 h and 24 h. This is possibly due to the smaller surface area of the larger flakes inhibiting the simulated digestion, which may have resulted in increased levels of resistant starch (Bifidobacterium are known to ferment this dietary fibre). Fermentation of Oat 25’s/26’s resulted in a propionate rich SCFA profile and a significant increase in butyrate, which have both been linked to benefiting host health. The smaller sized oats did not produce a significant increase in butyrate concentration. This study shows for the first time the impact of oat grain on the microbial ecology of the human gut and its potential to beneficially modulate the gut microbiota through increasing Bifidobacterium population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review discusses liquid crystal phase formation by biopolymers in solution. Lyotropic mesophases have been observed for several classes of biopolymer including DNA, peptides, polymer/peptide conjugates, glycopolymers and proteoglycans. Nematic or chiral nematic (cholesteric) phases are the most commonly observed mesophases, in which the rod-like fibrils have only orientational order. Hexagonal columnar phases are observed for several systems (DNA, PBLG, polymer/peptide hybrids) at higher concentration. Lamellar (smectic) phases are reported less often, although there are examples such as the layer arrangement of amylopectin side chains in starch. Possible explanations for the observed structures are discussed. The biological role of liquid crystal phases for several of these systems is outlined. Commonly, they may serve as a template to align fibrils for defined structural roles when the biopolymer is extruded and dried, for instance in the production of silk by spiders or silkworms, or of chitin in arthropod shells. In other cases, liquid crystal phase formation may occur in vivo simply as a consequence of high concentration, for instance the high packing density of DNA within cell nuclei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review discusses liquid crystal phase formation by biopolymers in solution. Lyotropic mesophases have been observed for several classes of biopolymer including DNA, peptides, polymer/peptide conjugates, glycopolymers and proteoglycans. Nematic or chiral nematic (cholesteric) phases are the most commonly observed mesophases, in which the rod-like fibrils have only orientational order. Hexagonal columnar phases are observed for several systems (DNA, PBLG, polymer/peptide hybrids) at higher concentration. Lamellar (smectic) phases are reported less often, although there are examples such as the layer arrangement of amylopectin side chains in starch. Possible explanations for the observed structures are discussed. The biological role of liquid crystal phases for several of these systems is outlined. Commonly, they may serve as a template to align fibrils for defined structural roles when the biopolymer is extruded and dried, for instance in the production of silk by spiders or silkworms, or of chitin in arthropod shells. In other cases, liquid crystal phase formation may occur in vivo simply as a consequence of high concentration, for instance the high packing density of DNA within cell nuclei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sweeteners are being sourced to lower the energetic value of confectionery including chocolates. Some, especially non-digestible carbohydrates, may possess other benefits for human health upon their fermentation by the colonic microbiota. The present study assessed non-digestible carbohydrate sweeteners, selected for use in low-energy chocolates, for their ability to beneficially modulate faecal bacterial profiles in human volunteers. Forty volunteers consumed a test chocolate (low-energy or experimental chocolate) containing 22·8 g of maltitol (MTL), MTL and polydextrose (PDX), or MTL and resistant starch for fourteen consecutive days. The dose of the test chocolates was doubled every 2 weeks over a 6-week period. Numbers of faecal bifidobacteria significantly increased with all the three test treatments. Chocolate containing the PDX blend also significantly increased faecal lactobacilli (P = 0·00 001) after the 6 weeks. The PDX blend also showed significant increases in faecal propionate and butyrate (P = 0·002 and 0·006, respectively). All the test chocolates were well tolerated with no significant change in bowel habit or intestinal symptoms even at a daily dose of 45·6 g of non-digestible carbohydrate sweetener. This is of importance not only for giving manufacturers a sugar replacement that can reduce energetic content, but also for providing a well-tolerated means of delivering high levels of non-digestible carbohydrates into the colon, bringing about improvements in the biomarkers of gut health.