50 resultados para Texture segmentation
Resumo:
Sclera segmentation is shown to be of significant importance for eye and iris biometrics. However, sclera segmentation has not been extensively researched as a separate topic, but mainly summarized as a component of a broader task. This paper proposes a novel sclera segmentation algorithm for colour images which operates at pixel-level. Exploring various colour spaces, the proposed approach is robust to image noise and different gaze directions. The algorithm’s robustness is enhanced by a two-stage classifier. At the first stage, a set of simple classifiers is employed, while at the second stage, a neural network classifier operates on the probabilities’ space generated by the classifiers at stage 1. The proposed method was ranked the 1st in Sclera Segmentation Benchmarking Competition 2015, part of BTAS 2015, with a precision of 95.05% corresponding to a recall of 94.56%.
Resumo:
Multispectral iris recognition uses information from multiple bands of the electromagnetic spectrum to better represent certain physiological characteristics of the iris texture and enhance obtained recognition accuracy. This paper addresses the questions of single versus cross spectral performance and compares score-level fusion accuracy for different feature types, combining different wavelengths to overcome limitations in less constrained recording environments. Further it is investigated whether Doddington's “goats” (users who are particularly difficult to recognize) in one spectrum also extend to other spectra. Focusing on the question of feature stability at different wavelengths, this work uses manual ground truth segmentation, avoiding bias by segmentation impact. Experiments on the public UTIRIS multispectral iris dataset using 4 feature extraction techniques reveal a significant enhancement when combining NIR + Red for 2-channel and NIR + Red + Blue for 3-channel fusion, across different feature types. Selective feature-level fusion is investigated and shown to improve overall and especially cross-spectral performance without increasing the overall length of the iris code.
Resumo:
While a multitude of motion segmentation algorithms have been presented in the literature, there has not been an objective assessment of different approaches to fusing their outputs. This paper investigates the application of 4 different fusion schemes to the outputs of 3 probabilistic pixel-level segmentation algorithms. We performed an extensive experimentation using 6 challenge categories from the changedetection.net dataset demonstrating that in general simple majority vote proves to be more effective than more complex fusion schemes.
Resumo:
This paper investigates the potential of fusion at normalisation/segmentation level prior to feature extraction. While there are several biometric fusion methods at data/feature level, score level and rank/decision level combining raw biometric signals, scores, or ranks/decisions, this type of fusion is still in its infancy. However, the increasing demand to allow for more relaxed and less invasive recording conditions, especially for on-the-move iris recognition, suggests to further investigate fusion at this very low level. This paper focuses on the approach of multi-segmentation fusion for iris biometric systems investigating the benefit of combining the segmentation result of multiple normalisation algorithms, using four methods from two different public iris toolkits (USIT, OSIRIS) on the public CASIA and IITD iris datasets. Evaluations based on recognition accuracy and ground truth segmentation data indicate high sensitivity with regards to the type of errors made by segmentation algorithms.
Resumo:
Contemporary US sitcom is at an interesting crossroads: it has received an increasing amount of scholarly attention (e.g. Mills 2009; Butler 2010; Newman and Levine 2012; Vermeulen and Whitfield 2013), which largely understands it as shifting towards the aesthetically and narratively complex. At the same time, in the post-broadcasting era, US networks are particularly struggling for their audience share. With the days of blockbuster successes like Must See TV’s Friends (NBC 1994-2004) a distant dream, recent US sitcoms are instead turning towards smaller, engaged audiences. Here, a cult sensibility of intertextual in-jokes, temporal and narrational experimentation (e.g. flashbacks and alternate realities) and self-reflexive performance styles have marked shows including Community (NBC 2009-2015), How I Met Your Mother (CBS 2005-2014), New Girl (Fox 2011-present) and 30 Rock (NBC 2006-2013). However, not much critical attention has so far been paid to how these developments in textual sensibility in contemporary US sitcom may be influenced by, and influencing, the use of transmedia storytelling practices, an increasingly significant industrial concern and rising scholarly field of enquiry (e.g. Jenkins 2006; Mittell 2015; Richards 2010; Scott 2010; Jenkins, Ford and Green 2013). This chapter investigates this mutual influence between sitcom and transmedia by taking as its case studies two network shows that encourage invested viewership through their use of transtexts, namely How I Met Your Mother (hereafter HIMHM) and New Girl (hereafter NG). As such, it will pay particular attention to the most transtextually visible character/actor from each show: HIMYM’s Barney Stinson, played by Neil Patrick Harris, and NG’s Schmidt, played by Max Greenfield. This chapter argues that these sitcoms do not simply have their particular textual sensibility and also (happen to) engage with transmedia practices, but that the two are mutually informing and defining. This chapter explores the relationships and interplay between sitcom aesthetics, narratives and transmedia storytelling (or industrial transtexts), focusing on the use of multiple delivery channels in order to disperse “integral elements of a fiction” (Jenkins, 2006 95-6), by official entities such as the broadcasting channels. The chapter pays due attention to the specific production contexts of both shows and how these inform their approaches to transtexts. This chapter’s conceptual framework will be particularly concerned with how issues of texture, the reality envelope and accepted imaginative realism, as well as performance and the actor’s input inform and illuminate contemporary sitcoms and transtexts, and will be the first scholarly research to do so. It will seek out points of connections between two (thus far) separate strands of scholarship and will move discussions on transtexts beyond the usual genre studied (i.e. science-fiction and fantasy), as well as make a contribution to the growing scholarship on contemporary sitcom by approaching it from a new critical angle. On the basis that transmedia scholarship stands to benefit from widening its customary genre choice (i.e. telefantasy) for its case studies and from making more use of in-depth close analysis in its engagement with transtexts, the chapter argues that notions of texture, accepted imaginative realism and the reality envelope, as well as performance and the actor’s input deserve to be paid more attention to within transtext-related scholarship.