108 resultados para Terahertz radiation


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quadratic programming optimization procedure for designing asymmetric apodization windows tailored to the shape of time-domain sample waveforms recorded using a terahertz transient spectrometer is proposed. By artificially degrading the waveforms, the performance of the designed window in both the time and the frequency domains is compared with that of conventional rectangular, triangular (Mertz), and Hamming windows. Examples of window optimization assuming Gaussian functions as the building elements of the apodization window are provided. The formulation is sufficiently general to accommodate other basis functions. (C) 2007 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quasi-optical deembedding technique for characterizing waveguides is demonstrated using wide-band time-resolved terahertz spectroscopy. A transfer function representation is adopted for the description of the signal in the input and output port of the waveguides. The time-domain responses were discretized and the waveguide transfer function was obtained through a parametric approach in the z-domain after describing the system with an AutoRegressive with eXogenous input (ARX), as well as with a state-space model. Prior to the identification procedure, filtering was performed in the wavelet domain to minimize both signal distortion, as well as the noise propagating in the ARX and subspace models. The optimal filtering procedure used in the wavelet domain for the recorded time-domain signatures is described in detail. The effect of filtering prior to the identification procedures is elucidated with the aid of pole-zero diagrams. Models derived from measurements of terahertz transients in a precision WR-8 waveguide adjustable short are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quasi-optical technique for characterizing micromachined waveguides is demonstrated with wideband time-resolved terahertz spectroscopy. A transfer-function representation is adopted for the description of the relation between the signals in the input and output port of the waveguides. The time-domain responses were discretized, and the waveguide transfer function was obtained through a parametric approach in the z domain after describing the system with an autoregressive with exogenous input model. The a priori assumption of the number of modes propagating in the structure was inferred from comparisons of the theoretical with the measured characteristic impedance as well as with parsimony arguments. Measurements for a precision WR-8 waveguide-adjustable short as well as for G-band reduced-height micromachined waveguides are presented. (C) 2003 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The THz water content index of a sample is defined and advantages in using such metric in estimating a sample's relative water content are discussed. The errors from reflectance measurements performed at two different THz frequencies using a quasi-optical null-balance reflectometer are propagated to the errors in estimating the sample water content index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach for automatic classification of pulsed Terahertz (THz), or T-ray, signals highlighting their potential in biomedical, pharmaceutical and security applications. T-ray classification systems supply a wealth of information about test samples and make possible the discrimination of heterogeneous layers within an object. In this paper, a novel technique involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) models on the wavelet transforms of measured T-ray pulse data is presented. Two example applications are examined - the classi. cation of normal human bone (NHB) osteoblasts against human osteosarcoma (HOS) cells and the identification of six different powder samples. A variety of model types and orders are used to generate descriptive features for subsequent classification. Wavelet-based de-noising with soft threshold shrinkage is applied to the measured T-ray signals prior to modeling. For classi. cation, a simple Mahalanobis distance classi. er is used. After feature extraction, classi. cation accuracy for cancerous and normal cell types is 93%, whereas for powders, it is 98%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A poor representation of cloud structure in a general circulation model (GCM) is widely recognised as a potential source of error in the radiation budget. Here, we develop a new way of representing both horizontal and vertical cloud structure in a radiation scheme. This combines the ‘Tripleclouds’ parametrization, which introduces inhomogeneity by using two cloudy regions in each layer as opposed to one, each with different water content values, with ‘exponential-random’ overlap, in which clouds in adjacent layers are not overlapped maximally, but according to a vertical decorrelation scale. This paper, Part I of two, aims to parametrize the two effects such that they can be used in a GCM. To achieve this, we first review a number of studies for a globally applicable value of fractional standard deviation of water content for use in Tripleclouds. We obtain a value of 0.75 ± 0.18 from a variety of different types of observations, with no apparent dependence on cloud type or gridbox size. Then, through a second short review, we create a parametrization of decorrelation scale for use in exponential-random overlap, which varies the scale linearly with latitude from 2.9 km at the Equator to 0.4 km at the poles. When applied to radar data, both components are found to have radiative impacts capable of offsetting biases caused by cloud misrepresentation. Part II of this paper implements Tripleclouds and exponential-random overlap into a radiation code and examines both their individual and combined impacts on the global radiation budget using re-analysis data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliably representing both horizontal cloud inhomogeneity and vertical cloud overlap is fundamentally important for the radiation budget of a general circulation model. Here, we build on the work of Part One of this two-part paper by applying a pair of parameterisations that account for horizontal inhomogeneity and vertical overlap to global re-analysis data. These are applied both together and separately in an attempt to quantify the effects of poor representation of the two components on radiation budget. Horizontal inhomogeneity is accounted for using the “Tripleclouds” scheme, which uses two regions of cloud in each layer of a gridbox as opposed to one; vertical overlap is accounted for using “exponential-random” overlap, which aligns vertically continuous cloud according to a decorrelation height. These are applied to a sample of scenes from a year of ERA-40 data. The largest radiative effect of horizontal inhomogeneity is found to be in areas of marine stratocumulus; the effect of vertical overlap is found to be fairly uniform, but with larger individual short-wave and long-wave effects in areas of deep, tropical convection. The combined effect of the two parameterisations is found to reduce the magnitude of the net top-of-atmosphere cloud radiative forcing (CRF) by 2.25 W m−2, with shifts of up to 10 W m−2 in areas of marine stratocumulus. The effects of the uncertainty in our parameterisations on radiation budget is also investigated. It is found that the uncertainty in the impact of horizontal inhomogeneity is of order ±60%, while the uncertainty in the impact of vertical overlap is much smaller. This suggests an insensitivity of the radiation budget to the exact nature of the global decorrelation height distribution derived in Part One.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared optical-multilayer filters and materials were exposed to the space environment of low Earth orbit on LDEF. This paper summarizes the effects of that environment on the physical and optical properties of the filters and materials flown.