61 resultados para Temperature measurements.
Resumo:
We present a new coefficient-based retrieval scheme for estimation of sea surface temperature (SST) from the Along Track Scanning Radiometer (ATSR) instruments. The new coefficients are banded by total column water vapour (TCWV), obtained from numerical weather prediction analyses. TCWV banding reduces simulated regional retrieval biases to < 0.1 K compared to biases ~ 0.2 K for global coefficients. Further, detailed treatment of the instrumental viewing geometry reduces simulated view-angle related biases from ~ 0.1 K down to < 0.005 K for dual-view retrievals using channels at 11 and 12 μm. A novel analysis of trade-offs related to the assumed noise level when defining coefficients is undertaken, and we conclude that adding a small nominal level of noise (0.01 K) is optimal for our purposes. When applied to ATSR observations, some inter-algorithm biases appear as TCWV-related differences in SSTs estimated from different channel combinations. The final step in coefficient determination is to adjust the offset coefficient in each TCWV band to match results from a reference algorithm. This reference uses the dual-view observations of 3.7 and 11 μm. The adjustment is independent of in situ measurements, preserving independence of the retrievals. The choice of reference is partly motivated by uncertainty in the calibration of the 12 μm of Advanced ATSR. Lastly, we model the sensitivities of the new retrievals to changes to TCWV and changes in true SST, confirming that dual-view SSTs are most appropriate for climatological applications
Resumo:
Most of the operational Sea Surface Temperature (SST) products derived from satellite infrared radiometry use multi-spectral algorithms. They show, in general, reasonable performances with root mean square (RMS) residuals around 0.5 K when validated against buoy measurements, but have limitations, particularly a component of the retrieval error that relates to such algorithms' limited ability to cope with the full variability of atmospheric absorption and emission. We propose to use forecast atmospheric profiles and a radiative transfer model to simulate the algorithmic errors of multi-spectral algorithms. In the practical case of SST derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG), we demonstrate that simulated algorithmic errors do explain a significant component of the actual errors observed for the non linear (NL) split window algorithm in operational use at the Centre de Météorologie Spatiale (CMS). The simulated errors, used as correction terms, reduce significantly the regional biases of the NL algorithm as well as the standard deviation of the differences with drifting buoy measurements. The availability of atmospheric profiles associated with observed satellite-buoy differences allows us to analyze the origins of the main algorithmic errors observed in the SEVIRI field of view: a negative bias in the inter-tropical zone, and a mid-latitude positive bias. We demonstrate how these errors are explained by the sensitivity of observed brightness temperatures to the vertical distribution of water vapour, propagated through the SST retrieval algorithm.
Resumo:
Sea surface temperature (SST) measurements are required by operational ocean and atmospheric forecasting systems to constrain modeled upper ocean circulation and thermal structure. The Global Ocean Data Assimilation Experiment (GODAE) High Resolution SST Pilot Project (GHRSST-PP) was initiated to address these needs by coordinating the provision of accurate, high-resolution, SST products for the global domain. The pilot project is now complete, but activities continue within the Group for High Resolution SST (GHRSST). The pilot project focused on harmonizing diverse satellite and in situ data streams that were indexed, processed, quality controlled, analyzed, and documented within a Regional/Global Task Sharing (R/GTS) framework implemented in an internationally distributed manner. Data with meaningful error estimates developed within GHRSST are provided by services within R/GTS. Currently, several terabytes of data are processed at international centers daily, creating more than 25 gigabytes of product. Ensemble SST analyses together with anomaly SST outputs are generated each day, providing confidence in SST analyses via diagnostic outputs. Diagnostic data sets are generated and Web interfaces are provided to monitor the quality of observation and analysis products. GHRSST research and development projects continue to tackle problems of instrument calibration, algorithm development, diurnal variability, skin temperature deviation, and validation/verification of GHRSST products. GHRSST also works closely with applications and users, providing a forum for discussion and feedback between SST users and producers on a regular basis. All data within the GHRSST R/GTS framework are freely available. This paper reviews the progress of GHRSST-PP, highlighting achievements that have been fundamental to the success of the pilot project.
Resumo:
The effect of diurnal variations in sea surface temperature (SST) on the air-sea flux of CO2 over the central Atlantic ocean and Mediterranean Sea (60 S–60 N, 60 W–45 E) is evaluated for 2005–2006. We use high spatial resolution hourly satellite ocean skin temperature data to determine the diurnal warming (ΔSST). The CO2 flux is then computed using three different temperature fields – a foundation temperature (Tf, measured at a depth where there is no diurnal variation), Tf, plus the hourly ΔSST and Tf, plus the monthly average of the ΔSSTs. This is done in conjunction with a physically-based parameterisation for the gas transfer velocity (NOAA-COARE). The differences between the fluxes evaluated for these three different temperature fields quantify the effects of both diurnal warming and diurnal covariations. We find that including diurnal warming increases the CO2 flux out of this region of the Atlantic for 2005–2006 from 9.6 Tg C a−1 to 30.4 Tg C a−1 (hourly ΔSST) and 31.2 Tg C a−1 (monthly average of ΔSST measurements). Diurnal warming in this region, therefore, has a large impact on the annual net CO2 flux but diurnal covariations are negligible. However, in this region of the Atlantic the uptake and outgassing of CO2 is approximately balanced over the annual cycle, so although we find diurnal warming has a very large effect here, the Atlantic as a whole is a very strong carbon sink (e.g. −920 Tg C a−1 Takahashi et al., 2002) making this is a small contribution to the Atlantic carbon budget.
Resumo:
Diurnal warming events between 5 and 7 K, spatially coherent over large areas (∼1000 km), are observed in independent satellite measurements of ocean surface temperature. The majority of the large events occurred in the extra-tropics. Given sufficient heating (from solar radiation), the location and magnitude of these events appears to be primarily determined by large-scale wind patterns. The amplitude of the measured diurnal heating scales inversely with the spatial resolution of the different sensors used in this study. These results indicate that predictions of peak diurnal warming using wind speeds with a 25 km spatial resolution available from satellite sensors and those with 50–100 km resolution from Numerical Weather Prediction models may have underestimated warming. Thus, the use of these winds in modeling diurnal effects will be limited in accuracy by both the temporal and spatial resolution of the wind fields.
Resumo:
Charged aerosol particles and water droplets are abundant throughout the lower atmosphere, and may influence interactions between small cloud droplets. This note describes a small, disposable sensor for the measurement of charge in non-thunderstorm cloud, which is an improvement of an earlier sensor [K. A. Nicoll and R. G. Harrison, Rev. Sci. Instrum. 80, 014501 (2009)]. The sensor utilizes a self-calibrating current measurement method. It is designed for use on a free balloon platform alongside a standard meteorological radiosonde, measuring currents from 2 fA to 15 pA and is stable to within 5 fA over a temperature range of 5 °C to −60 °C. During a balloon flight with the charge sensor through a stratocumulus cloud, charge layers up to 40 pC m−3 were detected on the cloud edges.
Resumo:
The optically stimulated luminescence (OSL) signal within quartz may be enhanced by thermal transfer during pre-heating. This may occur via a thermally induced charge transfer from low temperature traps to the OSL traps. Thermal transfer may affect both natural and artificially irradiated samples. The effect, as empirically measured via recuperation tests, is typically observed to be negligible for old samples (<1% of natural signal). However, thermal transfer remains a major concern in the dating of young samples as thermal decay and transfers of geologically unstable traps (typically in the TL range 160–280°C) may be incomplete. Upon pre-heating such a sample might undergo thermal transfer to the dating trap and result in a De overestimate. As a result, there has been a tendency for workers to adopt less rigorous pre-heats for young samples. We have investigated the pre-heat dependence of 23 young quartz samples from various depositional environments using pre-heats between 170°C and 300°C, employing the single aliquot regeneration (SAR) protocol. SAR De's were also calculated for 25 additional young quartz samples of different depositional environments and compared with previous multiple aliquot additive dose (MAAD) data. Results demonstrate no significant De dependence upon pre-heat temperatures. A close correspondence between MAAD data and the current SAR data for the samples tested is also illustrated.
Resumo:
Assessment is made of the effect of the assumed form for the ion velocity distribution function on estimates of three-dimensional ion temperature from one-dimensional observations. Incoherent scatter observations by the EISCAT radar at a variety of aspect angles are used to demonstrate features of ion temperature determination and to study the ion velocity distribution function. One form of the distribution function which has recently been widely used In the interpretation of EISCAT measurements, is found to be consistent with the data presented here, in that no deviation from a Maxwellian can be detected for observations along the magnetic field line and that the ion temperature and its anisotropy are accurately predicted. It is shown that theoretical predictions of the anisotropy by Monte Carlo computations are very accurate, the observed value being greater by only a few percent. It is also demonstrated for the case studied that errors of up to 93% are introduced into the ion temperature estimate if the anisotropy is neglected. Observations at an aspect angle of 54.7°, which are not subject to this error, have a much smaller uncertainty (less than 1%) due to the adopted form of the distribution of line-of-sight velocity.
Resumo:
The urban heat island is a well-known phenomenon that impacts a wide variety of city operations. With greater availability of cheap meteorological sensors, it is possible to measure the spatial patterns of urban atmospheric characteristics with greater resolution. To develop robust and resilient networks, recognizing sensors may malfunction, it is important to know when measurement points are providing additional information and also the minimum number of sensors needed to provide spatial information for particular applications. Here we consider the example of temperature data, and the urban heat island, through analysis of a network of sensors in the Tokyo metropolitan area (Extended METROS). The effect of reducing observation points from an existing meteorological measurement network is considered, using random sampling and sampling with clustering. The results indicated the sampling with hierarchical clustering can yield similar temperature patterns with up to a 30% reduction in measurement sites in Tokyo. The methods presented have broader utility in evaluating the robustness and resilience of existing urban temperature networks and in how networks can be enhanced by new mobile and open data sources.
Resumo:
Stalagmites are natural archives containing detailed information on continental climate variability of the past. Microthermometric measurements of fluid inclusion homogenisation temperatures allow determination of stalagmite formation temperatures by measuring the radius of stable laser-induced vapour bubbles inside the inclusions. A reliable method for precisely measuring the radius of vapour bubbles is presented. The method is applied to stalagmite samples for which the formation temperature is known. An assessment of the bubble radius measurement accuracy and how this error influences the uncertainty in determining the formation temperature is provided. We demonstrate that the nominal homogenisation temperature of a single inclusion can be determined with an accuracy of ±0.25 °C, if the volume of the inclusion is larger than 105 μm3. With this method, we could measure in a proof-of-principle investigation that the formation temperature of 10–20 yr old inclusions in a stalagmite taken from the Milandre cave is 9.87 ± 0.80 °C, while the mean annual surface temperature, that in the case of the Milandre cave correlates well with the cave temperature, was 9.6 ± 0.15 °C, calculated from actual measurements at that time, showing a very good agreement. Formation temperatures of inclusions formed during the last 450 yr are found in a temperature range between 8.4 and 9.6 °C, which corresponds to the calculated average surface temperature. Paleotemperatures can thus be determined within ±1.0 °C.
Resumo:
The ecology of soils associated with dead mammals (i.e. cadavers) is poorly understood. Although temperature and soil type are well known to influence the decomposition of other organic resource patches, the effect of these variables on the degradation of cadavers in soil has received little experimental investigation. To address this, cadavers of juvenile rats (Rattus rattus) were buried in one of three contrasting soils (Sodosol, Rudosol, and Vertosol) from tropical savanna ecosystems in Queensland, Australia and incubated at 29 °C, 22 °C, or 15 °C in a laboratory setting. Cadavers and soils were destructively sampled at intervals of 7 days over an incubation period of 28 days. Measurements of decomposition included cadaver mass loss, carbon dioxide–carbon (CO2–C) evolution, microbial biomass carbon (MBC), protease activity, phosphodiesterase activity, and soil pH, which were all significantly positively affected by cadaver burial. A temperature effect was observed where peaks or differences in decomposition that at occurred at higher temperature would occur at later sample periods at lower temperature. Soil type also had an important effect on some measured parameters. These findings have important implications for a largely unexplored area of soil ecology and nutrient cycling, which are significant for forensic science, cemetery planning and livestock carcass disposal.
Resumo:
We quantify the effect of the snow-albedo feedback on Swiss spring temperature trends using daily temperature and snow depth measurements from six station pairs for the period 1961–2011. We show that the daily mean 2-m temperature of a spring day without snow cover is on average 0.4 °C warmer than one with snow cover at the same location. This estimate is comparable with estimates from climate modelling studies. Caused by the decreases in snow pack, the snow-albedo feedback amplifies observed temperature trends in spring. The influence is small and confined to areas around the upward-moving snow line in spring and early summer. For the 1961–2011 period, the related temperature trend increases are in the order of 3–7 % of the total observed trend.
Resumo:
Collocations between two satellite sensors are occasions where both sensors observe the same place at roughly the same time. We study collocations between the Microwave Humidity Sounder (MHS) on-board NOAA-18 and the Cloud Profiling Radar (CPR) on-board CloudSat. First, a simple method is presented to obtain those collocations and this method is compared with a more complicated approach found in literature. We present the statistical properties of the collocations, with particular attention to the effects of the differences in footprint size. For 2007, we find approximately two and a half million MHS measurements with CPR pixels close to their centrepoints. Most of those collocations contain at least ten CloudSat pixels and image relatively homogeneous scenes. In the second part, we present three possible applications for the collocations. Firstly, we use the collocations to validate an operational Ice Water Path (IWP) product from MHS measurements, produced by the National Environment Satellite, Data and Information System (NESDIS) in the Microwave Surface and Precipitation Products System (MSPPS). IWP values from the CloudSat CPR are found to be significantly larger than those from the MSPPS. Secondly, we compare the relation between IWP and MHS channel 5 (190.311 GHz) brightness temperature for two datasets: the collocated dataset, and an artificial dataset. We find a larger variability in the collocated dataset. Finally, we use the collocations to train an Artificial Neural Network and describe how we can use it to develop a new MHS-based IWP product. We also study the effect of adding measurements from the High Resolution Infrared Radiation Sounder (HIRS), channels 8 (11.11 μm) and 11 (8.33 μm). This shows a small improvement in the retrieval quality. The collocations described in the article are available for public use.
Resumo:
We present one of the first studies of the use of Distributed Temperature Sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer and in the soil. Our field site was at a groundwater-fed wet meadow in the Netherlands covered by a canopy layer (between 0-0.5 m thickness) consisting of grass and sedges. At this site, we ran a single cable across the surface in parallel 40 m sections spaced by 2 m, to create a 40×40 m monitoring field for GST. We also buried a short length (≈10 m) of cable to depth of 0.1±0.02 m to measure soil temperature. We monitored the temperature along the entire cable continuously over a two-day period and captured the diurnal course of GST, and how it was affected by rainfall and canopy structure. The diurnal GST range, as observed by the DTS system, varied between 20.94 and 35.08◦C; precipitation events acted to suppress the range of GST. The spatial distribution of GST correlated with canopy vegetation height during both day and night. Using estimates of thermal inertia, combined with a harmonic analysis of GST and soil temperature, substrate and soil-heat fluxes were determined. Our observations demonstrate how the use of DTS shows great promise in better characterising area-average substrate/soil heat flux, their spatiotemporal variability, and how this variability is affected by canopy structure. The DTS system is able to provide a much richer data set than could be obtained from point temperature sensors. Furthermore, substrate heat fluxes derived from GST measurements may be able to provide improved closure of the land surface energy balance in micrometeorological field studies. This will enhance our understanding of how hydrometeorological processes interact with near-surface heat fluxes.
Resumo:
The field campaign LOFZY 2005 (LOFoten ZYklonen, engl.: Cyclones) was carried out in the frame of Collaborative Research Centre 512, which deals with low-pressure systems (cyclones) and the climate system of the North Atlantic. Cyclones are of special interest due to their influence on the interaction between atmosphere and ocean. Cyclone activity in the northern part of the Atlantic Ocean is notably high and is of particular importance for the entire Atlantic Ocean. An area of maximum precipitation exists in front of the Norwegian Lofoten islands. One aim of the LOFZY field campaign was to clarify the role cyclones play in the interaction of ocean and atmosphere. In order to obtain a comprehensive dataset of cyclone activity and ocean-atmosphere interaction a field experiment was carried out in the Lofoten region during March and April 2005. Employed platforms were the Irish research vessel RV Celtic Explorer which conducted a meteorological (radiosondes, standard parameters, observations) and an oceanographic (CTD) program. The German research aircraft Falcon accomplished eight flight missions (between 4-21 March) to observe synoptic conditions with high spatial and temporal resolution. In addition 23 autonomous marine buoys were deployed in advance of the campaign in the observed area to measure drift, air-temperature and -pressure and water-temperature. In addition to the published datasets several other measurements were performed during the experiment. Corresonding datasets will be published in the near future and are available on request. Details about all used platforms and sensors and all performed measurements are listed in the fieldreport. The following datasets are available on request: ground data at RV Celtic Explorer