79 resultados para Synchronized intermittent mandatory ventilation
Resumo:
In cattle, the lymphoid rich regions of the rectal-anal mucosa at the terminal rectum are the preferred site for Escherichia coli O157:H7 colonisation. All cattle infected by rectal swab administration demonstrate long-term E. coli O157:H7 colonisation, whereas orally challenged cattle do not demonstrate long-term E. coli O157:H7 colonisation in all animals. Oral, but not rectal challenge of sheep with E. coli O157:H7 has been reported, but an exact site for colonisation in sheep is unknown. To determine if E. coli O157:H7 can effectively colonise the ovine terminal rectum, in vitro organ culture (IVOC) was initiated. Albeit sparsely, large, densely packed E. coli O157:H7 micro-colonies were observed on the mucosa of ovine and control bovine terminal rectum explants. After necropsy of orally inoculated lambs, bacterial enumeration of the proximal and distal gastrointestinal tract did suggest a preference for E. coli O157:H7 colonisation at the ovine terminal rectum, albeit for both lymphoid rich and non-lymphoid sites. As reported for cattle, rectal inoculation studies were then conducted to determine if all lambs would demonstrate persistent colonisation at the terminal rectum. After necropsy of E. coli O157:H7 rectally inoculated lambs, most animals were not colonised at gastrointestinal sites proximal to the rectum, however, large densely packed micro-colonies of E. coli O157:H7 were observed on the ovine terminal rectum mucosa. Nevertheless, at the end point of the study (day 14), only one lamb had E. coli O157:H7 micro-colonies associated with the terminal rectum mucosa. A comparison of E. coli O157:H7 shedding yielded a similar pattern of persistence between rectally and orally inoculated lambs. The inability of E. coli O157:H7 to effectively colonise the terminal rectum mucosa of all rectally inoculated sheep in the long term, suggests that E. coli O157:H7 may colonise this site, but less effectively than reported previously for cattle.
Resumo:
To study the thermal effects on airflow in a street canyon under real heating conditions (due to diurnal solar radiation), a one-way static approach combining an urban canopy model and CFD is proposed in this paper. An urban canopy model was developed to calculate the individual temperatures of surfaces in the street canyon. The calculated surface temperature may be used as a thermal boundary for CFD simulation. The reliability of this model was validated against a field experiment in Harbin, China. Using the coupling calculation method, the wind flow and air exchange process inside an idealized street canyon was studied. The simulation results show that the thermal effect has significant impacts on the transfer process in the street canyon, especially when the approaching wind is weak. Under a real diurnal thermal forcing, the flow structure within the street canyon changes from one primary vortex to two counter-rotating vortices. The change of transfer process, induced by the buoyancy force, was determined by the thermal condition of all surfaces rather than a single one. Key words: thermal effect, street canyon, numerical simulation, transfer process, diurnal heating.
Resumo:
Carbon monoxide (CO) concentration data from 1999–2006, monitored at 5 different pollution stations in a high-rise mega city (Hong Kong), were collected and investigated. The spatio-temporal characteristics of urban CO concentration profiles were obtained. A new approach was put forward to examine the relationship between urban CO concentration and different wind flow patterns. Rather than relying on the meteorological data from a single weather station, usually adopted in previous studies, four weather stations on the boundary of Hong Kong territory were used in the present study so as to identify 16 different wind flow patterns, among which a typical urban heat island circulation (UHIC) can be distinguished. Higher concentrations were observed to be associated with the flow pattern of an inflow from Lau Fau Shan (LFS) station which is located in the northwest of Hong Kong. This suggests that the ability of dilution for north-to-west wind is relatively weak due to the pollutants carried from outside Hong Kong. The effectiveness of wind speed on the alleviation of urban concentration is dependent on the initial concentration of the approaching wind. The increase of wind speed of north-to-west wind from 0 m/s to 6 m/s has little effect on the reduction of urban CO concentration, especially on the non-roadside stations. By contrast, for the southerly marine wind, pollution concentration decreases sharply with an increase in the wind speed. It was also found that urban heat island circulation (UHIC) is conducive of the accumulation of pollutants, especially at night. There exists a positive correlation between CO concentration and UHI intensity. This correlation is much stronger at night compared to during the day. Keywords: urban pollution monitoring, urban ventilation pattern, urban heat island circulation, mega city
Resumo:
This paper reports the results of a parametric CFD study on idealized city models to investigate the potential of slope flow in ventilating a city located in a mountainous region when the background synoptic wind is absent. Examples of such a city include Tokyo in Japan, Los Angeles and Phoenix in the US, and Hong Kong. Two types of buoyancy-driven flow are considered, i.e., slope flow from the mountain slope (katabatic wind at night and anabatic wind in the daytime), and wall flow due to heated/cooled urban surfaces. The combined buoyancy-driven flow system can serve the purpose of dispersing the accumulated urban air pollutants when the background wind is weak or absent. The microscopic picture of ventilation performance within the urban structures was evaluated in terms of air change rate (ACH) and age of air. The simulation results reveal that the slope flow plays an important role in ventilating the urban area, especially in calm conditions. Katabatic flow at night is conducive to mitigating the nocturnal urban heat island. In the present parametric study, the mountain slope angle and mountain height are assumed to be constant, and the changing variables are heating/cooling intensity and building height. For a typical mountain of 500 m inclined at an angle of 20° to the horizontal level, the interactive structure is very much dependent on the ratio of heating/cooling intensity as well as building height. When the building is lower than 60 m, the slope wind dominates. When the building is as high as 100 m, the contribution from the urban wall flow cannot be ignored. It is found that katabatic wind can be very beneficial to the thermal environment as well as air quality at the pedestrian level. The air change rate for the pedestrian volume can be as high as 300 ACH.
Resumo:
Natural-ventilation potential (NVP) value can provide the designers significant information to properly design and arrange natural ventilation strategy at the preliminary or conceptual stage of ventilation and building design. Based on the previous study by Yang et al. [Investigation potential of natural driving forces for ventilation in four major cities in China. Building and Environment 2005;40:739–46], we developed a revised model to estimate the potential for natural ventilation considering both thermal comfort and IAQ issues for buildings in China. It differs from the previous one by Yang et al. in two predominant aspects: (1) indoor air temperature varies synchronously with the outdoor air temperature rather than staying at a constant value as assumed by Yang et al. This would recover the real characteristic of natural ventilation, (2) thermal comfort evaluation index is integrated into the model and thus the NVP can be more reasonably predicted. By adopting the same input parameters, the NVP values are obtained and compared with the early work of Yang et al. for a single building in four representative cities which are located in different climates, i.e., Urumqi in severe cold regions, Beijing in cold regions, Shanghai in hot summer and cold winter regions and Guangzhou in hot summer and warm winter regions of China. Our outcome shows that Guangzhou has the highest and best yearly natural-ventilation potential, followed by Shanghai, Beijing and Urumqi, which is quite distinct from that of Yang et al. From the analysis, it is clear that our model evaluates the NVP values more consistently with the outdoor climate data and thus reveals the true value of NVP.
Resumo:
The aim of the present work is to study the occupants' exposure to fine particulate concentrations in ten nightclubs (NCs) in Athens, Greece. Measurements of PM1 and PM 2.5 were made in the outdoor and indoor environment of each NC. The average indoorPM1 andPM 2.5 concentrations were found to be 181.77 μgm−3 and 454.08 μg m−3 respectively, while the corresponding outdoor values were 11.04 μg m−3 and 32.19 μg m−3. Ventilation and resuspension rates were estimated through consecutive numerical experiments with an indoor air quality model and were found to be remarkably lower than the minimum values recommended by national standards. The relative effects of the ventilation and smoking on the occupants' exposures were examined using multiple regression techniques. Itwas found that given the low ventilation rates, the effect of smoking as well as the occupancy is of the highest importance. Numerical evaluations showed that if the ventilation rates were at the minimum values set by national standards, then the indoor exposures would be reduced at the 70% of the present exposure values.
Resumo:
Given the background of serious urban pollution in Hong Kong, the intake fraction (iF) of carbon monoxide due to mobile vehicles in urban area of Hong Kong is investigated and estimated to be 600 per million, much higher than those in US urban areas, Helsinki and even Beijing, indicating the high exposure level to urban pollutants in Hong Kong. The dependence of iF to the metrological factors is also discussed. Easterly and northerly winds contribute most to the total iF value. A new method of predicting ventilation rate for a city based on iF concept is proposed. City ventilation rates for different cities are calculated and compared. It is found that Hong Kong has to face the fact that it has the lowest ventilation rate and ACH.
Resumo:
Many modern cities locate in the mountainous areas, like Hong Kong, Phoenix City and Los Angles. It is confirmed in the literature that the mountain wind system developed by differential heating or cooling can be very beneficial in ventilating the city nearby and alleviating the UHI effect. However, the direct interaction of mountain wind with the natural-convection circulation due to heated urban surfaces has not been studied, to our best knowledge. This kind of unique interaction of two kinds of airflow structures under calm and neutral atmospheric environment is investigated in this paper by CFD approach. A physical model comprising a simple mountain and three long building blocks (forming two street canyons) is firstly developed. Different airflow structures are identified within the conditions of different mountain-building height ratios (R=Hm/Hb) by varying building height but fixing mountain height. It is found that the higher ventilation rate in the street canyons is expected in the cases of smaller mountain-building ratios, indicating the stronger natural convection due to increasing heated building surfaces. However, there is the highest air change rate (ACH) in the lowest-building-height case and most of the air is advective into the street canyon through the top open area, highlighting the important role played by the mountain wind. In terms of the ventilation efficiency, it is shown that the smallest R case enjoys the best air change efficiency followed by the highest R case, while the worst ventilative street canyons occur at the middle R case. In the end, a gap across the streets is introduced in the modeling. The existence of the gap can greatly channel the mountain wind and distribute the air into streets nearby. Thus the ACH can be doubled and air quality can be significantly improved.
Resumo:
Natural ventilation relies on less controllable natural forces so that it needs more artificial control, and thus its prediction, design and analysis become more important. This paper presents both theoretical and numerical simulations for predicting the natural ventilation flow in a two-zone building with multiple openings which is subjected to the combined natural forces. To our knowledge, this is the first analytical solutions obtained so far for a building with more than one zones and in each zone with possibly more than 2 openings. The analytical solution offers a possibility for validating a multi-zone airflow program. A computer program MIX is employed to conduct the numerical simulation. Good agreement is achieved. Different airflow modes are identified and some design recommendations are also provided.