54 resultados para Symmetric matrices
Resumo:
We consider a new class of non-self-adjoint matrices that arise from an indefinite self- adjoint linear pencil of matrices, and obtain the spectral asymptotics of the spectra as the size of the matrices diverges to infinity. We prove that the spectrum is qualitatively different when a certain parameter c equals 0, and when it is non-zero, and that certain features of the spectrum depend on Diophantine properties of c.
Resumo:
In this paper we develop and apply methods for the spectral analysis of non-selfadjoint tridiagonal infinite and finite random matrices, and for the spectral analysis of analogous deterministic matrices which are pseudo-ergodic in the sense of E. B. Davies (Commun. Math. Phys. 216 (2001), 687–704). As a major application to illustrate our methods we focus on the “hopping sign model” introduced by J. Feinberg and A. Zee (Phys. Rev. E 59 (1999), 6433–6443), in which the main objects of study are random tridiagonal matrices which have zeros on the main diagonal and random ±1’s as the other entries. We explore the relationship between spectral sets in the finite and infinite matrix cases, and between the semi-infinite and bi-infinite matrix cases, for example showing that the numerical range and p-norm ε - pseudospectra (ε > 0, p ∈ [1,∞] ) of the random finite matrices converge almost surely to their infinite matrix counterparts, and that the finite matrix spectra are contained in the infinite matrix spectrum Σ. We also propose a sequence of inclusion sets for Σ which we show is convergent to Σ, with the nth element of the sequence computable by calculating smallest singular values of (large numbers of) n×n matrices. We propose similar convergent approximations for the 2-norm ε -pseudospectra of the infinite random matrices, these approximations sandwiching the infinite matrix pseudospectra from above and below.
Resumo:
The state-resolved reactivity of CH4 in its totally symmetric C-H stretch vibration (�1) has been measured on a Ni(100) surface. Methane molecules were accelerated to kinetic energies of 49 and 63:5 kJ=mol in a molecular beam and vibrationally excited to �1 by stimulated Raman pumping before surface impact at normal incidence. The reactivity of the symmetric-stretch excited CH4 is about an order of magnitude higher than that of methane excited to the antisymmetric stretch (�3) reported by Juurlink et al. [Phys. Rev. Lett. 83, 868 (1999)] and is similar to that we have previously observed for the excitation of the first overtone (2�3). The difference between the state-resolved reactivity for �1 and �3 is consistent with predictions of a vibrationally adiabatic model of the methane reaction dynamics and indicates that statistical models cannot correctly describe the chemisorption of CH4 on nickel.
Resumo:
Evidence is presented that the performance of the rationally designed MALDI matrix 4-chloro-α-cyanocinnamic acid (ClCCA) in comparison to its well-established predecessor α-cyano-4-hydroxycinnamic acid (CHCA) is significantly dependent on the sample preparation, such as the choice of the target plate. In this context, it becomes clear that any rational designs of MALDI matrices and their successful employment have to consider a larger set of physicochemical parameters, including sample crystallization and morphology/topology, in addition to parameters of basic (solution and/or gas-phase) chemistry.
Resumo:
In order to achieve a safe swallowing in patients with dysphagia, liquids must be thickened. In this work, two commercial starch based thickeners dissolved in water, whole milk, apple juice and tomato juice were studied. The thickeners were Resource®, composed of modified maize starch and Nutilis®, composed of modified maize starch and gums. They were formulated at two different concentrations corresponding to nectar- and pudding-like consistencies. Influence of composition, concentration and food matrix on rheological properties and structure of the resulting pastes were analysed. Viscoelastic measurements and microscopic observations of the thickeners dissolved in water revealed structural differences due to the presence of gums. When the thickeners were dissolved in the other food matrices significant statistical interactions were found between the matrix and the thickener-type in both the viscoelastic and flow parameters. The most relevant differences were observed for the nectar-like consistency with Nutilis® thickener in milk and apple juice. These samples had lower zero viscosity values and higher loss tangent values, that corresponded to weaker structured systems. Light microscopy images showed that the matrix formed by swollen starch granules was interrupted by the presence of gums. The structure of the matrices in pudding-like formulations became more continuous irrespectively of the matrix employed, and also differences in viscoelasticity among samples diminished. Although differences were observed in zero shear viscosity values among samples, the viscosity of the beverages at 50 s−1 – commonly used as a reference for swallowing – was similar for all samples regardless of the matrix used.
Resumo:
Although liquid matrix-assisted laser desorption/ionization (MALDI) has been used in mass spectrometry (MS) since the early introduction of MALDI, its substantial lack of sensitivity compared to solid (crystalline) MALDI was for a long time a major hurdle to its analytical competitiveness. In the last decade, this situation has changed with the development of new sensitive liquid matrices, which are often based on a binary matrix acid/base system. Some of these matrices were inspired by the recent progress in ionic liquid research, while others were developed from revisiting previous liquid MALDI work as well as from a combination of these two approaches. As a result, two high-performing liquid matrix classes have been developed, the ionic liquid matrices (ILMs) and the liquid support matrices (LSMs), now allowing MS measurements at a sensitivity level that is very close to the level of solid MALDI and in some cases even surpasses it. This chapter provides some basic information on a selection of highly successful representatives of these new liquid matrices and describes in detail how they are made and applied in MALDI MS analysis.
Resumo:
In analysis of complex nuclear forensic samples containing lanthanides, actinides and matrix elements, rapid selective extraction of Am/Cm for quantification is challenging, in particular due the difficult separation of Am/Cm from lanthanides. Here we present a separation process for Am/Cm(III) which is achieved using a combination of AG1-X8 chromatography followed by Am/Cm extraction with a triazine ligand. The ligands tested in our process were CyMe4-BTPhen, CyMe4- BTBP, CA-BTP and CA-BTPhen. Our process allows for purification and quantification of Am and Cm (recoveries 80%–100%) and other major actinides in < 2d without the use of multiple columns or thiocyanate. The process is unaffected by high level Ca(II)/Fe(III)/Al(III) (10mg mL−1) and thus requires little pre-treatment of samples.
Resumo:
Melts of ABA triblock copolymer molecules with identical end blocks are examined using self-consistent field theory (SCFT). Phase diagrams are calculated and compared with those of homologous AB diblock copolymers formed by snipping the triblocks in half. This creates additional end segments which decreases the degree of segregation. Consequently, triblock melts remain ordered to higher temperatures than their diblock counterparts. We also find that middle-block domains are easier to stretch than end-block domains. As a result, domain spacings are slightly larger, the complex phase regions are shifted towards smaller A-segment compositions, and the perforated-lamellar phase becomes more metastable in triblock melts as compared to diblock melts. Although triblock and diblock melts exhibit very similar phase behavior, their mechanical properties can differ substantially due to triblock copolymers that bridge between otherwise disconnected A domains. We evaluate the bridging fraction for lamellar, cylindrical, and spherical morphologies to be about 40%–45%, 60%–65%, and 75%–80%, respectively. These fractions only depend weakly on the degree of segregation and the copolymer composition.