53 resultados para Sustainable Energy
Resumo:
Cities are responsible for up to 70% of global carbon emissions and 75% of global energy consumption. By 2050 it is estimated that 70% of the world's population will live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city-regions (i.e. the city and its wider hinterland) to re-engineer systemically their built environment and urban infrastructure in response to climate change and resource constraints. To inform transitions to urban sustainability, key stakeholders' perceptions were sought though a participatory backcasting and scenario foresight process in order to illuminate challenging but realistic socio-technical scenarios for the systemic retrofit of core UK city-regions. The challenge of conceptualizing complex urban transitions is explored across multiple socio-technical ‘regimes’ (housing, non-domestic buildings, urban infrastructure), scales (building, neighbourhood, city-region), and domains (energy, water, use of resources) within a participatory process. The development of three archetypal ‘guiding visions’ of retrofit city-regional futures developed through this process are discussed, along with the contribution that such foresight processes might play in ‘opening up’ the governance and strategic navigation of urban sustainability.
Resumo:
Existing buildings contribute greatly to global energy use and greenhouse gas emissions. In the UK, about 18% of carbon emissions are generated by non-domestic buildings; sustainable building refurbishment can play an important role in reducing carbon emissions. This paper looks at the performance of a recently refurbished 5-storey office building in London, in terms of energy consumption as well as occupants’ satisfaction. Pre- and post-occupancy evaluation studies were conducted using online questionnaire surveys and energy consumption evaluation. Results from pre-occupancy and post-occupancy evaluation studies showed that employees, in general, were more satisfied with their work environment at the refurbished building than with that of their previous office. Employees’ self-reported productivity improved after the move to Elms House. These surveys showed a positive relationship between employees’ satisfaction with their work environment and their self-reported productivity, well-being and enjoyment at work. The factor that contributed to increasing employee satisfaction the most was: better use of interior space. Although the refurbishment was a success in terms of reducing energy consumption per m2, the performance gap was almost 3 times greater than that estimated. Unregulated loads, problems with building control, ineffective use of space and occupants’ behaviour are argued to be reasons for this gap.
Resumo:
Urban metabolism considers a city as a system with flows of energy and material between it and the environment. Recent advances in bio-physical sciences provide methods and models to estimate local scale energy, water, carbon and pollutant fluxes. However, good communication is required to provide this new knowledge and its implications to endusers (such as urban planners, architects and engineers). The FP7 project BRIDGE (sustainaBle uRban plannIng Decision support accountinG for urban mEtabolism) aimed to address this gap by illustrating the advantages of considering these issues in urban planning. The BRIDGE Decision Support System (DSS) aids the evaluation of the sustainability of urban planning interventions. The Multi Criteria Analysis approach adopted provides a method to cope with the complexity of urban metabolism. In consultation with targeted end-users, objectives were defined in relation to the interactions between the environmental elements (fluxes of energy, water, carbon and pollutants) and socioeconomic components (investment costs, housing, employment, etc.) of urban sustainability. The tool was tested in five case study cities: Helsinki, Athens, London, Florence and Gliwice; and sub-models were evaluated using flux data selected. This overview of the BRIDGE project covers the methods and tools used to measure and model the physical flows, the selected set of sustainability indicators, the methodological framework for evaluating urban planning alternatives and the resulting DSS prototype.
Resumo:
The domestic (residential) sector accounts for 30% of the world’s energy consumption hence plays a substantial role in energy management and CO2 emissions reduction efforts. Energy models have been generally developed to mitigate the impact of climate change and for the sustainable management and planning of energy resources. Although there are different models and model categories, they are generally categorised into top down and bottom up. Significantly, top down models are based on aggregated data while bottom up models are based on disaggregated data. These approaches create fundamental differences which have been the centre of debate since the 1970’s. These differences have led to noticeable discrepancies in results which have led to authors arguing that the models are of a more complementary than a substituting nature. As a result developing methods suggest that there is the need to integrate either the two models (bottom up − top down) or aspects that combine two bottom up models or an upgrade of top down models to compensate for the documented limitations. Diverse schools of thought argue in favour of these integrations – currently known as hybrid models. In this paper complexities of identifying country specific and/or generic domestic energy models and their applications in different countries have been critically reviewed. Predominantly from the review it is evident that most of these methods have been adapted and used in the ‘western world’ with practically no such applications in Africa.
Resumo:
The growing dependence on electricity for economic growth in all countries prompts the need to manage current resources for future sustainability. In today’s world, greater emphasis is placed on energy conservation for energy security and for the development of every economy. However, for some countries understanding the basic drivers to such achievements is farfetched. The research presented in this paper investigates the electricity generation and access potential for Botswana. In addition detailed documentation and 13 years energy consumption and generation trends are investigated. Using questionnaires and empirical studies the energy demand for the entire nation was estimated. From the research it was established that current energy generation trends account for 38- 39% of the country’s population with access to electricity. Considering the percentage rate of sector energy demand, the proposed total installed capacity of 1332 MW, would not meet the country's energy demand at 100% access. The likely consequence of the lack of adequate supply would cumulate to significant increase of imports and/or load shedding to meet demand.
Resumo:
Intensive farming focusing on monoculture grass species to maximise forage production has led to a reduction in the extent and diversity of species-rich grasslands. However, plant communities with higher species number (richness) are a potential strategy for more sustainable production and mitigation of greenhouse gas (GHG) emissions. Research has indicated the need to understand opportunities that forage mixtures can offer sustainable ruminant production systems. The objective of the two experiments reported here were to evaluate multiple species forage mixtures in comparison to ryegrass-dominant pasture, when conserved or grazed, on digestion, energy utilisation, N excretion, and methane emissions by growing 10–15 month old heifers. Experiment 1 was a 4 × 4 Latin square design with five week periods. Four forage treatments of: (1) ryegrass (control); permanent pasture with perennial ryegrass (Lolium perenne); (2) clover; a ryegrass:red clover (Trifolium pratense) mixture; (3) trefoil; a ryegrass:birdsfoot trefoil (Lotus corniculatus) mixture; and (4) flowers; a ryegrass:wild flower mixture of predominately sorrel (Rumex acetosa), ox-eye daisy (Leucanthemum vulgare), yarrow (Achillea millefolium), knapweed (Centaurea nigra) and ribwort plantain (Plantago lanceolata), were fed as haylages to four dairy heifers. Measurements included digestibility, N excretion, and energy utilisation (including methane emissions measured in respiration chambers). Experiment 2 used 12 different dairy heifers grazing three of the same forage treatments used to make haylage in experiment 1 (ryegrass, clover and flowers) and methane emissions were estimated using the sulphur hexafluoride (SF6) tracer technique. Distribution of ryegrass to other species (dry matter (DM) basis) was approximately 70:30 (clover), 80:20 (trefoil), and 40:60 (flowers) for experiment 1. During the first and second grazing rotations (respectively) in experiment 2, perennial ryegrass accounted for 95 and 98% of DM in ryegrass, and 84 and 52% of DM in clover, with red clover accounting for almost all of the remainder. In the flowers mixture, perennial ryegrass was 52% of the DM in the first grazing rotation and only 30% in the second, with a variety of other flower species occupying the remainder. Across both experiments, compared to the forage mixtures (clover, trefoil and flowers), ryegrass had a higher crude protein (CP) content (P < 0.001, 187 vs. 115 g kg −1 DM) and DM intake (P < 0.05, 9.0 vs. 8.1 kg day −1). Heifers in experiment 1 fed ryegrass, compared to the forage mixtures, had greater total tract digestibility (g kg −1) of DM (DMD; P < 0.008, 713 vs. 641) and CP (CPD, P < 0.001, 699 vs. 475), and used more intake energy (%) for body tissue deposition (P < 0.05, 2.6 vs. −4.9). For both experiments, heifers fed flowers differed the most compared to the ryegrass control for a number of measurements. Compared to ryegrass, flowers had 40% lower CP content (P < 0.001, 113 vs. 187 g kg −1), 18% lower DMD (P < 0.01, 585 vs. 713 g kg −1), 42% lower CPD (P < 0.001, 407 vs. 699 g kg −1), and 10% lower methane yield (P < 0.05, 22.6 vs. 25.1 g kg −1 DM intake). This study has shown inclusion of flowers in forage mixtures resulted in a lower CP concentration, digestibility and intake. These differences were due in part to sward management and maturity at harvest. Further research is needed to determine how best to exploit the potential environmental benefits of forage mixtures in sustainable ruminant production systems.
Resumo:
It is necessary to minimize the environmental impact and utilize natural resources in a sustainable and efficient manner in the early design stage of developing an environmentally-conscious design for a heating, ventilating and air-conditioning system. Energy supply options play a significant role in the total environmental load of heating, ventilating and air-conditioning systems. To assess the environmental impact of different energy options, a new method based on Emergy Analysis is proposed. Emergy Accounting, was first developed and widely used in the area of ecological engineering, but this is the first time it has been used in building service engineering. The environmental impacts due to the energy options are divided into four categories under the Emergy Framework: the depletion of natural resources, the greenhouse effect (carbon dioxide equivalents), the chemical rain effect (sulphur dioxide equivalents), and anthropogenic heat release. The depletion of non-renewable natural resources is indicated by the Environmental Load Ratio, and the environmental carrying capacity is developed to represent the environmental service to dilute the pollutants and anthropogenic heat released. This Emergy evaluation method provides a new way to integrate different environmental impacts under the same framework and thus facilitates better system choices. A case study of six different kinds of energy options consisting of renewable and non-renewable energy was performed by using Emergy Theory, and thus their relative environmental impacts were compared. The results show that the method of electricity generation in energy sources, especially for electricity-powered systems, is the most important factor to determine their overall environmental performance. The direct-fired lithium-bromide absorption type consumes more non-renewable energy, and contributes more to the urban heat island effect compared with other options having the same electricity supply. Using Emergy Analysis, designers and clients can make better-informed, environmentally-conscious selections of heating, ventilating and air-conditioning systems.