50 resultados para Stimulus onset asynchrony
Resumo:
The advance of the onset of the Indian monsoon is here explained in terms of a balance between the low-level monsoon flow and an over-running intrusion of mid-tropospheric dry air. The monsoon advances, over a period of about 6 weeks, from the south of the country to the northwest. Given that the low-level monsoon winds are westerly or southwesterly, and the midlevel winds northwesterly, the monsoon onset propagates upwind relative to midlevel flow, and perpendicular to the low-level flow, and is not directly caused by moisture flux toward the northwest. Lacking a conceptual model for the advance means that it has been hard to understand and correct known biases in weather and climate prediction models. The mid-level northwesterlies form a wedge of dry air that is deep in the far northwest of India and over-runs the monsoon flow. The dry layer is moistened from below by shallow cumulus and congestus clouds, so that the profile becomes much closer to moist adiabatic, and the dry layer is much shallower in the vertical, toward the southeast of India. The profiles associated with this dry air show how the most favourable environment for deep convection occurs in the south, and onset occurs here first. As the onset advances across India, the advection of moisture from the Arabian Sea becomes stronger, and the mid-level dry air is increasingly moistened from below. This increased moistening makes the wedge of dry air shallower throughout its horizontal extent, and forces the northern limit of moist convection to move toward the northwest. Wetting of the land surface by rainfall will further reinforce the north-westward progression, by sustaining the supply of boundary layer moisture and shallow cumulus. The local advance of the monsoon onset is coincident with weakening of the mid-level northwesterlies, and therefore weakened mid-level dry advection.
Resumo:
We report a longitudinal comprehension study of (long) passive constructions in two native-Spanish child groups differing by age of initial exposure to L2 English (young group: 3;0-4;0 years; older group: 6;0-7;0 years); where amount of input, L2 exposure environment, and socio-economic status are controlled. Data from a forced-choice task show that both groups comprehend active sentences, not passives, initially (after 3.6 years of exposure). One year later, both groups improve, but only the older group reaches ceiling on both actives and passives. Two years from initial testing, the younger group catches up. Input alone cannot explain why the younger group takes 5 years to accomplish what the older group does in 4. We claim that some properties take longer to acquire at certain ages because language development is partially constrained by general cognitive and linguistic development (e.g. de Villiers, 2007; Long & Rothman, 2014; Paradis, 2008, 2010, 2011; Tsimpli, 2014).
Resumo:
We present the first multi-event study of the spatial and temporal structuring of the aurora to provide statistical evidence of the near-Earth plasma instability which causes the substorm onset arc. Using data from ground-based auroral imagers, we study repeatable signatures of along-arc auroral beads, which are thought to represent the ionospheric projection of magnetospheric instability in the near-Earth plasma sheet. We show that the growth and spatial scales of these wave-like fluctuations are similar across multiple events, indicating that each sudden auroral brightening has a common explanation. We find statistically that growth rates for auroral beads peak at low wavenumber with the most unstable spatial scales mapping to an azimuthal wavelength λ≈1700 − 2500 km in the equatorial magnetosphere at around 9-12 RE. We compare growth rates and spatial scales with a range of theoretical predictions of magnetotail instabilities, including the cross-field current instability and the shear-flow ballooning instability. We conclude that, although the cross-field current instability can generate similar magnitude of growth rates, the range of unstable wavenumbers indicates that the shear-flow ballooning instability is the most likely explanation for our observations.
Resumo:
Background The precipitating role of life events in the onset of depression is well-established. The present study sought to examine whether life events hypothesised to be personally salient would be more strongly associated with depression than other life events. In a sample of women making the first transition to parenthood, we hypothesised that negative events related to the partner relationship would be particularly salient and thus more strongly predictive of depression than other events. Methods A community-based sample of 316 first-time mothers stratified by psychosocial risk completed interviews at 32 weeks gestation and 29 weeks postpartum to assess dated occurrence of life events and depression onsets from conception to 29 weeks postpartum. Complete data was available from 273 (86.4%). Cox proportional hazards regression was used to examine risk for onset of depression in the 6 months following a relationship event versus other events, after accounting for past history of depression and other potential confounders. Results 52 women (19.0%) experienced an onset of depression between conception and 6 months postpartum. Both relationship events (Hazard Ratio = 2.1, p = .001) and other life events (Hazard Ratio = 1.3, p = .020) were associated with increased risk for depression onset; however, relationship events showed a significantly greater risk for depression than did other life events (p = .044). Conclusions The results are consistent with the hypothesis that personally salient events are more predictive of depression onset than other events. Further, they indicate the clinical significance of events related to the partner relationship during pregnancy and the postpartum.