55 resultados para Soil solution electrical conductivity
Resumo:
In this paper we show for the first time that calcite granules, produced by the earthworm Lumbricus terrestris, and commonly recorded at sites of archaeological interest, accurately reflect temperature and soil water δ18O values. Earthworms were cultivated in an orthogonal combination of two different (granule-free) soils moistened by three types of mineral water and kept at three temperatures (10, 16 and 20 ºC) for an acclimatisation period of three weeks followed by transfer to identical treatments and cultivation for a further four weeks. Earthworm-secreted calcite granules were collected from the second set of soils. δ18O values were determined on individual calcite granules (δ18Oc) and the soil solution (δ18Ow). The δ18Oc values reflect soil solution δ18Ow values and temperature, but are consistently enriched by 1.51 (±0.12) ‰ in comparison to equilibrium in synthetic carbonates. The data fit the equation 1000 ln α = [20.21 ± 0.92] (103 T-1) - [38.58 ± 3.18] (R2 = 0.95; n = 96; p < 0.0005). As the granules are abundant in modern soils, buried soils and archaeological contexts, and can be dated using U-Th disequilibria, the developed palaeotemperature relationship has enormous potential for application to Holocene and Pleistocene time intervals.
Resumo:
Background: Phosphorus (P) is an essential macronutrient for plants. Plants take up P as phosphate (Pi) from the soil solution. Since little Pi is available in most soils, P fertilizers are applied to crops. However, the use of P fertilizers is unsustainable and may cause pollution. Consequently, there is a need to develop more P-use-efficient (PUE) crops and precise methods to monitor crop P-status. Scope: Manipulating the expression of genes to improve the PUE of crops could reduce their P fertilizer requirement. This has stimulated research towards the identification of genes and signalling cascades involved in plant responses to P deficiency. Genes that respond to P deficiency can be grouped into 'early' genes that respond rapidly and often non-specifically to P deficiency, or 'late' genes that impact on the morphology, physiology or metabolism of plants upon Prolonged P deficiency. Summary: The use of micro-array technology has allowed researchers to catalogue the genetic responses of plants to P deficiency. Genes whose expression is altered by P deficiency include various transcription factors, which are thought to coordinate plant responses to P deficiency, and other genes involved in P acquisition and tissue P economy. Several common cis-regulatory elements have been identified in the promoters of these genes, suggesting that their expression might be coordinated. It is suggested that knowledge of the genes whose expression changes in response to P deficiency might allow the development of crops with improved PUE, and could be used in diagnostic techniques to monitor P deficiency in crops either directly using 'smart' indicator plants or indirectly through transcript profiling. The development of crops with improved PUE and the adoption of diagnostic technology could reduce production costs, minimize the use of a non-renewable resource, reduce pollution and enhance biodiversity.
Resumo:
We have fabricated a compliant neural interface to record afferent nerve activity. Stretchable gold electrodes were evaporated on a polydimethylsiloxane (PDMS) substrate and were encapsulated using photo-patternable PDMS. The built-in microstructure of the gold film on PDMS allows the electrodes to twist and flex repeatedly, without loss of electrical conductivity. PDMS microchannels (5mm long, 100μm wide, 100μm deep) were then plasma bonded irreversibly on top of the electrode array to define five parallel-conduit implants. The soft gold microelectrodes have a low impedance of ~200kΩ at the 1kHz frequency range. Teased nerves from the L6 dorsal root of an anaesthetized Sprague Dawley rat were threaded through the microchannels. Acute tripolar recordings of cutaneous activity are demonstrated, from multiple nerve rootlets simultaneously. Confinement of the axons within narrow microchannels allows for reliable recordings of low amplitude afferents. This electrode technology promises exciting applications in neuroprosthetic devices including bladder fullness monitors and peripheral nervous system implants.
Resumo:
The new thermoelectric material BiOCuTe exhibits an electrical conductivity of 224 S cm-1 and a Seebeck coefficient of +186 μV K-1 at 373 K, together with an extremely low lattice thermal conductivity of ∼ 0.5 W m-1 K-1. This results in a ZT of 0.42 at 373 K, which increases to 0.66 at the maximum temperature investigated, 673 K.
Resumo:
Oceanography is concerned with understanding the mechanisms controlling the movement of seawater and its contents. A fundamental tool in this process is the characterization of the thermophysical properties of seawater as functions of measured temperature and electrical conductivity, the latter used as a proxy for the concentration of dissolved matter in seawater. For many years a collection of algorithms denoted the Equation of State 1980 (EOS-80) has been the internationally accepted standard for calculating such properties. However, modern measurement technology now allows routine observations of temperature and electrical conductivity to be made to at least one order of magnitude more accurately than the uncertainty in this standard. Recently, a new standard has been developed, the Thermodynamical Equation of Seawater 2010 (TEOS-10). This new standard is thermodynamically consistent, valid over a wider range of temperature and salinity, and includes a mechanism to account for composition variations in seawater. Here we review the scientific development of this standard, and describe the literature involved in its development, which includes many of the articles in this special issue.
Resumo:
The solar wind is an extended ionized gas of very high electrical conductivity, and therefore drags some magnetic flux out of the Sun to fill the heliosphere with a weak interplanetary magnetic field(1,2). Magnetic reconnection-the merging of oppositely directed magnetic fields-between the interplanetary field and the Earth's magnetic field allows energy from the solar wind to enter the near-Earth environment. The Sun's properties, such as its luminosity, are related to its magnetic field, although the connections are still not well understood(3,4). Moreover, changes in the heliospheric magnetic field have been linked with changes in total cloud cover over the Earth, which may influence global climate(5), Here we show that measurements of the near-Earth interplanetary magnetic field reveal that the total magnetic flux leaving the Sun has risen by a factor of 1.4 since 1964: surrogate measurements of the interplanetary magnetic field indicate that the increase since 1901 has been by a factor of 2,3, This increase may be related to chaotic changes in the dynamo that generates the solar magnetic field. We do not yet know quantitatively how such changes will influence the global environment.
Resumo:
Biochars are biological residues combusted under low oxygen conditions, resulting in a porous, low density carbon rich material. Their large surface areas and cation exchange capacities, determined to a large extent by source materials and pyrolysis temperatures, enables enhanced sorption of both organic and inorganic contaminants to their surfaces, reducing pollutant mobility when amending contaminated soils. Liming effects or release of carbon into soil solution may increase arsenic mobility, whilst low capital but enhanced retention of plant nutrients can restrict revegetation on degraded soils amended only with biochars; the combination of composts, manures and other amendments with biochars could be their most effective deployment to soils requiring stabilisation by revegetation. Specific mechanisms of contaminant-biochar retention and release over time and the environmental impact of biochar amendments on soil organisms remain somewhat unclear but must be investigated to ensure that the management of environmental pollution coincides with ecological sustainability.
Resumo:
Two key plant adaptations for phosphorus (P) acquisition are carboxylate exudation into the rhizosphere and mycorrhizal symbioses. These target different soil P resources, presumably with different plant carbon costs. We examined the effect of inoculation with arbuscular mycorrhizal fungi (AMF) on amount of rhizosphere carboxylates and plant P uptake for 10 species of low-P adapted Kennedia grown for 23 weeks in low-P sand. Inoculation decreased carboxylates in some species (up to 50%), decreased plant dry weight (21%) and increased plant P content (23%). There was a positive logarithmic relationship between plant P content and the amount of rhizosphere citric acid for inoculated and uninoculated plants. Causality was indicated by experiments using sand where little citric acid was lost from the soil solution over 2 h and citric acid at low concentrations desorbed P into the soil solution. Senesced leaf P concentration was often low and P-resorption efficiencies reached >90%. In conclusion, we propose that mycorrhizally mediated resource partitioning occurred because inoculation reduced rhizosphere carboxylates, but increased plant P uptake. Hence, presumably, the proportion of plant P acquired from strongly sorbed sources decreased with inoculation, while the proportion from labile inorganic P increased. Implications for plant fitness under field conditions now require investigation.
Resumo:
Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kVm-1 to 100 kVm-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)-MicroARES (Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ measurements.
Resumo:
A family of phases, CoxTiS2 (0 ≤ x ≤ 0.75) has been prepared and characterised by powder X-ray and neutron diffraction, electrical and thermal transport property measurements, thermal analysis and SQUID magnetometry. With increasing cobalt content, the structure evolves from a disordered arrangement of cobalt ions in octahedral sites located in the van der Waals’ gap (x ≤ 0.2), through three different ordered vacancy phases, to a second disordered phase at x ≥ 0.67. Powder neutron diffraction reveals that both octahedral and tetrahedral inter-layer sites are occupied in Co0.67TiS2. Charge transfer from the cobalt guest to the TiS2 host affords a systematic tuning of the electrical and thermal transport properties. At low levels of cobalt intercalation (x < 0.1), the charge transfer increases the electrical conductivity sufficiently to offset the concomitant reduction in |S|. This, together with a reduction in the overall thermal conductivity leads to thermoelectric figures of merit that are 25 % higher than that of TiS2, ZT reaching 0.30 at 573 K for CoxTiS2 with 0.04 ≤ x ≤ 0.08. Whilst the electrical conductivity is further increased at higher cobalt contents, the reduction in |S| is more marked due to the higher charge carrier concentration. Furthermore both the charge carrier and lattice contributions to the thermal conductivity are increased in the electrically conductive ordered-vacancy phases, with the result that the thermoelectric performance is significantly degraded. These results illustrate the competition between the effects of charge transfer from guest to host and the disorder generated when cobalt cations are incorporated in the inter-layer space.