73 resultados para Simulation in robotcs


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Integrated simulation models can be useful tools in farming system research. This chapter reviews three commonly used approaches, i.e. linear programming, system dynamics and agent-based models. Applications of each approach are presented and strengths and drawbacks discussed. We argue that, despite some challenges, mainly related to the integration of different approaches, model validation and the representation of human agents, integrated simulation models contribute important insights to the analysis of farming systems. They help unravelling the complex and dynamic interactions and feedbacks among bio-physical, socio-economic, and institutional components across scales and levels in farming systems. In addition, they can provide a platform for integrative research, and can support transdisciplinary research by functioning as learning platforms in participatory processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As a major mode of intraseasonal variability, which interacts with weather and climate systems on a near-global scale, the Madden – Julian Oscillation (MJO) is a crucial source of predictability for numerical weather prediction (NWP) models. Despite its global significance and comprehensive investigation, improvements in the representation of the MJO in an NWP context remain elusive. However, recent modifications to the model physics in the ECMWF model led to advances in the representation of atmospheric variability and the unprecedented propagation of the MJO signal through the entire integration period. In light of these recent advances, a set of hindcast experiments have been designed to assess the sensitivity of MJO simulation to the formulation of convection. Through the application of established MJO diagnostics, it is shown that the improvements in the representation of the MJO can be directly attributed to the modified convective parametrization. Furthermore, the improvements are attributed to the move from a moisture-convergent- to a relative-humidity-dependent formulation for organized deep entrainment. It is concluded that, in order to understand the physical mechanisms through which a relative-humidity-dependent formulation for entrainment led to an improved simulation of the MJO, a more process-based approach should be taken. T he application of process-based diagnostics t o t he hindcast experiments presented here will be the focus of Part II of this study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Part I of this study it was shown that moving from a moisture-convergent- to a relative-humidity-dependent organized entrainment rate in the formulation for deep convection was responsible for significant advances in the simulation of the Madden – Julian Oscillation (MJO) in the ECMWF model. However, the application of traditional MJO diagnostics were not adequate to understand why changing the control on convection had such a pronounced impact on the representation of the MJO. In this study a set of process-based diagnostics are applied to the hindcast experiments described in Part I to identify the physical mechanisms responsible for the advances in MJO simulation. Increasing the sensitivity of the deep convection scheme to environmental moisture is shown to modify the relationship between precipitation and moisture in the model. Through dry-air entrainment, convective plumes ascending in low-humidity environments terminate lower in the atmosphere. As a result, there is an increase in the occurrence of cumulus congestus, which acts to moisten the mid troposphere. Due to the modified precipitation – moisture relationship more moisture is able to build up, which effectively preconditions the tropical atmosphere for the t ransition t o d eep convection. R esults from this study suggest that a tropospheric moisture control on convection is key to simulating the interaction between the convective heating and the large-scale wave forcing associated with the MJO.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Secular trends of daily precipitation characteristics are considered in the transient climate change experiment with a coupled atmosphere-ocean general circulation model ECHAM4/OPYC3 for 1900-2099. The climate forcing is due to increasing concentrations of the greenhouse gases in the atmosphere. Mean daily precipitation, precipitation intensity, probability of wet days and parameters of the gamma distribution are analyzed. Particular attention is paid to the changes of heavy precipitation, Analysis of the annual mean precipitation trends for 1900-1999 revealed general agreement with observations with significant positive trends in mean precipitation over continental areas. In the 2000-2099 period precipitation trend patterns followed the tendency obtained for 1900-1999 but with significantly increased magnitudes. Unlike the annual mean precipitation trends for which negative values were found for some continental areas, the mean precipitation intensity and scale parameter of the fitted gamma distribution increased over all land territories . Negative trends in the number of wet days were found over most of the land areas except high latitudes in the Northern Hemisphere. The shape parameter of the gamma distribution in general revealed a slight negative trend in the areas of the precipitation increase. Investigation of daily precipitation revealed an unproportional increase of heavy precipitation events for the land areas including local maxima in Europe and the eastern United States.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study of intense hurricane-type vortices in the ECMWF operational model is reported. These vortices develop around day 4 in the forecast and occur in the tropical belt in areas and at times where intense tropical cyclones normally occur. The frequency resembles that observed over most tropical regions with a pronounced maximum in the western North Pacific. The life time of the vortices and their 3-dimensional structure agree in some fundamental way with observations although, because of the resolution, the systems are less intense than the observed ones. The general large-scale conditions for active and inactive cyclone periods are discussed. The model cyclones are sensitive to the sea-surface temperature and do not develop with sea surface temperatures lower than 28–29°C. The dynamical conditions favouring cyclone development are characterized by intense large-scale divergence in the upper troposphere. Cyclogenesis appears to take place when these conditions are found outside the equatorial zone and over oceans where the water is sufficiently warm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study puts forward a method to model and simulate the complex system of hospital on the basis of multi-agent technology. The formation of the agents of hospitals with intelligent and coordinative characteristics was designed, the message object was defined, and the model operating mechanism of autonomous activities and coordination mechanism was also designed. In addition, the Ontology library and Norm library etc. were introduced using semiotic method and theory, to enlarge the method of system modelling. Swarm was used to develop the multi-agent based simulation system, which is favorable for making guidelines for hospital's improving it's organization and management, optimizing the working procedure, improving the quality of medical care as well as reducing medical charge costs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of global magnetospheric models, such as Space Weather Modeling Framework (SWMF), which can accurately reproduce and track space weather processes has high practical utility. We present an interval on 5 June 1998, where the location of the polar cap boundary, or open-closed field line boundary (OCB), can be determined in the ionosphere using a combination of instruments during a period encompassing a sharp northward to southward interplanetary field turning. We present both point- and time-varying comparisons of the observed and simulated boundaries in the ionosphere and find that when using solely the coupled ideal magnetohydrodynamic magnetosphere-ionosphere model, the rate of change of the OCB to a southward turning of the interplanetary field is significantly faster than that computed from the observational data. However, when the inner magnetospheric module is incorporated, the modeling framework both qualitatively, and often quantitatively, reproduces many elements of the studied interval prior to an observed substorm onset. This result demonstrates that the physics of the inner magnetosphere is critical in shaping the boundary between open and closed field lines during periods of southward interplanetary magnetic field (IMF) and provides significant insight into the 3-D time-dependent behavior of the Earth's magnetosphere in response to a northward-southward IMF turning. We assert that during periods that do not include the tens of minutes surrounding substorm expansion phase onset, the coupled SWMF model may provide a valuable and reliable tool for estimating both the OCB and magnetic field topology over a wide range of latitudes and local times.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have incorporated a semi-mechanistic isoprene emission module into the JULES land-surface scheme, as a first step towards a modelling tool that can be applied for studies of vegetation – atmospheric chemistry interactions, including chemistry-climate feedbacks. Here, we evaluate the coupled model against local above-canopy isoprene emission flux measurements from six flux tower sites as well as satellite-derived estimates of isoprene emission over tropical South America and east and south Asia. The model simulates diurnal variability well: correlation coefficients are significant (at the 95 % level) for all flux tower sites. The model reproduces day-to-day variability with significant correlations (at the 95 % confidence level) at four of the six flux tower sites. At the UMBS site, a complete set of seasonal observations is available for two years (2000 and 2002). The model reproduces the seasonal pattern of emission during 2002, but does less well in the year 2000. The model overestimates observed emissions at all sites, which is partially because it does not include isoprene loss through the canopy. Comparison with the satellite-derived isoprene-emission estimates suggests that the model simulates the main spatial patterns, seasonal and inter-annual variability over tropical regions. The model yields a global annual isoprene emission of 535 ± 9 TgC yr−1 during the 1990s, 78 % of which from forested areas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Models for water transfer in the crop-soil system are key components of agro-hydrological models for irrigation, fertilizer and pesticide practices. Many of the hydrological models for water transfer in the crop-soil system are either too approximate due to oversimplified algorithms or employ complex numerical schemes. In this paper we developed a simple and sufficiently accurate algorithm which can be easily adopted in agro-hydrological models for the simulation of water dynamics. We used a dual crop coefficient approach proposed by the FAO for estimating potential evaporation and transpiration, and a dynamic model for calculating relative root length distribution on a daily basis. In a small time step of 0.001 d, we implemented algorithms separately for actual evaporation, root water uptake and soil water content redistribution by decoupling these processes. The Richards equation describing soil water movement was solved using an integration strategy over the soil layers instead of complex numerical schemes. This drastically simplified the procedures of modeling soil water and led to much shorter computer codes. The validity of the proposed model was tested against data from field experiments on two contrasting soils cropped with wheat. Good agreement was achieved between measurement and simulation of soil water content in various depths collected at intervals during crop growth. This indicates that the model is satisfactory in simulating water transfer in the crop-soil system, and therefore can reliably be adopted in agro-hydrological models. Finally we demonstrated how the developed model could be used to study the effect of changes in the environment such as lowering the groundwater table caused by the construction of a motorway on crop transpiration. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The construction field is dynamic and dominated by complex, ill-defined problems for which myriad possible solutions exist. Teaching students to solve construction-related problems requires an understanding of the nature of these complex problems as well as the implementation of effective instructional strategies to address them. Traditional approaches to teaching construction planning and management have long been criticized for presenting students primarily with well-defined problems - an approach inconsistent with the challenges encountered in the industry. However, growing evidence suggests that employing innovative teaching approaches, such as interactive simulation games, offers more active, hands-on and problem-based learning opportunities for students to synthesize and test acquired knowledge more closely aligned with real-life construction scenarios. Simulation games have demonstrated educational value in increasing student problem solving skills and motivation through critical attributes such as interaction and feedback-supported active learning. Nevertheless, broad acceptance of simulation games in construction engineering education remains limited. While recognizing benefits, research focused on the role of simulation games in educational settings lacks a unified approach to developing, implementing and evaluating these games. To address this gap, this paper provides an overview of the challenges associated with evaluating the effectiveness of simulation games in construction education that still impede their wide adoption. An overview of the current status, as well as the results from recently implemented Virtual Construction Simulator (VCS) game at Penn State provide lessons learned, and are intended to guide future efforts in developing interactive simulation games to reach their full potential.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The primary role of land surface models embedded in climate models is to partition surface available energy into upwards, radiative, sensible and latent heat fluxes. Partitioning of evapotranspiration, ET, is of fundamental importance: as a major component of the total surface latent heat flux, ET affects the simulated surface water balance, and related energy balance, and consequently the feedbacks with the atmosphere. In this context it is also crucial to credibly represent the CO2 exchange between ecosystems and their environment. In this study, JULES, the land surface model used in UK weather and climate models, has been evaluated for temperate Europe. Compared to eddy covariance flux measurements, the CO2 uptake by the ecosystem is underestimated and the ET overestimated. In addition, the contribution to ET from soil and intercepted water evaporation far outweighs the contribution of plant transpiration. To alleviate these biases, adaptations have been implemented in JULES, based on key literature references. These adaptations have improved the simulation of the spatio-temporal variability of the fluxes and the accuracy of the simulated GPP and ET, including its partitioning. This resulted in a shift of the seasonal soil moisture cycle. These adaptations are expected to increase the fidelity of climate simulations over Europe. Finally, the extreme summer of 2003 was used as evaluation benchmark for the use of the model in climate change studies. The improved model captures the impact of the 2003 drought on the carbon assimilation and the water use efficiency of the plants. It, however, underestimates the 2003 GPP anomalies. The simulations showed that a reduction of evaporation from the interception and soil reservoirs, albeit not of transpiration, largely explained the good correlation between the carbon and the water fluxes anomalies that was observed during 2003. This demonstrates the importance of being able to discriminate the response of individual component of the ET flux to environmental forcing.