47 resultados para Sewage lagoons.
Resumo:
The transfer of Cd and Zn from soils amended with sewage sludge was followed through a food chain consisting of wheat, aphids and the predator Coccinella septempunctata. Multiple regression models were generated to predict the concentrations of Cd and Zn in C. septempunctata. No significant model could be generated for Cd, indicting that the concentration of this metal was maintained within relatively narrow limits. A model predicting 64% of the variability in the Zn concentration of C. septempunctata was generated from of the concentration of Zn in the diet, time and rate of Zn consumption. The results suggest that decreasing the rate of food consumption is an effective mechanism to prevent the accumulation of Zn and that the availability of Zn in the aphid prey increased with the concentration in the aphids. The results emphasise the importance of using ecologically relevant food chains and exposure pathways during ecotoxicological studies.
Resumo:
This study investigates the transfer of Cd and Zn from a soil amended with sewage sludge at rates up to 100 t ha(-1) through a multi-trophic system consisting of barley, the aphid Sitobion avenae and the larvae of the lacewing Chrysoperla carnae. Results show marked differences in the transfer of the two metals. Cadmium was freely accumulated in barley roots, but accumulation in the shoot was restricted to a concentration of around 0.22 mg kg(-1) (dry weight). This limited the transfer of Cd to higher trophic levels and resulted in no significant accumulation of Cd in S. avenae or in C. carnae. Zinc transfer in the system was largely unrestricted, resulting in significant accumulation in roots and shoots, in S. avenae and in C. carnae. Cadmium biomagnification occurred in lacewing pupae, with concentrations up to 3.6 times greater than in aphids. S. avenae biomagnified Zn by a factor of ca. 2.5 at low sludge amendment rates, but biomagnification decreased to a factor of 1.4 at the highest amendment rate. Biomagnification of Zn did not occur in C. carnae, but concentrations were up to 3.5 time higher than in soil. Results are discussed in light of the mechanisms regulating transfer of the two metals in the system.