130 resultados para Sequential Modeling
The sequential analysis of repeated binary responses: a score test for the case of three time points
Resumo:
In this paper a robust method is developed for the analysis of data consisting of repeated binary observations taken at up to three fixed time points on each subject. The primary objective is to compare outcomes at the last time point, using earlier observations to predict this for subjects with incomplete records. A score test is derived. The method is developed for application to sequential clinical trials, as at interim analyses there will be many incomplete records occurring in non-informative patterns. Motivation for the methodology comes from experience with clinical trials in stroke and head injury, and data from one such trial is used to illustrate the approach. Extensions to more than three time points and to allow for stratification are discussed. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
In a sequential clinical trial, accrual of data on patients often continues after the stopping criterion for the study has been met. This is termed “overrunning.” Overrunning occurs mainly when the primary response from each patient is measured after some extended observation period. The objective of this article is to compare two methods of allowing for overrunning. In particular, simulation studies are reported that assess the two procedures in terms of how well they maintain the intended type I error rate. The effect on power resulting from the incorporation of “overrunning data” using the two procedures is evaluated.
Resumo:
There is increasing interest in combining Phases II and III of clinical development into a single trial in which one of a small number of competing experimental treatments is ultimately selected and where a valid comparison is made between this treatment and the control treatment. Such a trial usually proceeds in stages, with the least promising experimental treatments dropped as soon as possible. In this paper we present a highly flexible design that uses adaptive group sequential methodology to monitor an order statistic. By using this approach, it is possible to design a trial which can have any number of stages, begins with any number of experimental treatments, and permits any number of these to continue at any stage. The test statistic used is based upon efficient scores, so the method can be easily applied to binary, ordinal, failure time, or normally distributed outcomes. The method is illustrated with an example, and simulations are conducted to investigate its type I error rate and power under a range of scenarios.
Resumo:
Sequential methods provide a formal framework by which clinical trial data can be monitored as they accumulate. The results from interim analyses can be used either to modify the design of the remainder of the trial or to stop the trial as soon as sufficient evidence of either the presence or absence of a treatment effect is available. The circumstances under which the trial will be stopped with a claim of superiority for the experimental treatment, must, however, be determined in advance so as to control the overall type I error rate. One approach to calculating the stopping rule is the group-sequential method. A relatively recent alternative to group-sequential approaches is the adaptive design method. This latter approach provides considerable flexibility in changes to the design of a clinical trial at an interim point. However, a criticism is that the method by which evidence from different parts of the trial is combined means that a final comparison of treatments is not based on a sufficient statistic for the treatment difference, suggesting that the method may lack power. The aim of this paper is to compare two adaptive design approaches with the group-sequential approach. We first compare the form of the stopping boundaries obtained using the different methods. We then focus on a comparison of the power of the different trials when they are designed so as to be as similar as possible. We conclude that all methods acceptably control type I error rate and power when the sample size is modified based on a variance estimate, provided no interim analysis is so small that the asymptotic properties of the test statistic no longer hold. In the latter case, the group-sequential approach is to be preferred. Provided that asymptotic assumptions hold, the adaptive design approaches control the type I error rate even if the sample size is adjusted on the basis of an estimate of the treatment effect, showing that the adaptive designs allow more modifications than the group-sequential method.
Resumo:
Pharmacovigilance, the monitoring of adverse events (AEs), is an integral part in the clinical evaluation of a new drug. Until recently, attempts to relate the incidence of AEs to putative causes have been restricted to the evaluation of simple demographic and environmental factors. The advent of large-scale genotyping, however, provides an opportunity to look for associations between AEs and genetic markers, such as single nucleotides polymorphisms (SNPs). It is envisaged that a very large number of SNPs, possibly over 500 000, will be used in pharmacovigilance in an attempt to identify any genetic difference between patients who have experienced an AE and those who have not. We propose a sequential genome-wide association test for analysing AEs as they arise, allowing evidence-based decision-making at the earliest opportunity. This gives us the capability of quickly establishing whether there is a group of patients at high-risk of an AE based upon their DNA. Our method provides a valid test which takes account of linkage disequilibrium and allows for the sequential nature of the procedure. The method is more powerful than using a correction, such as idák, that assumes that the tests are independent. Copyright © 2006 John Wiley & Sons, Ltd.
Resumo:
While planning the GAIN International Study of gavestinel in acute stroke, a sequential triangular test was proposed but not implemented. Before the trial commenced it was agreed to evaluate the sequential design retrospectively to evaluate the differences in the resulting analyses, trial durations and sample sizes in order to assess the potential of sequential procedures for future stroke trials. This paper presents four sequential reconstructions of the GAIN study made under various scenarios. For the data as observed, the sequential design would have reduced the trial sample size by 234 patients and shortened its duration by 3 or 4 months. Had the study not achieved a recruitment rate that far exceeded expectation, the advantages of the sequential design would have been much greater. Sequential designs appear to be an attractive option for trials in stroke. Copyright 2004 S. Karger AG, Basel
Resumo:
A sequential study design generally makes more efficient use of available information than a fixed sample counterpart of equal power. This feature is gradually being exploited by researchers in genetic and epidemiological investigations that utilize banked biological resources and in studies where time, cost and ethics are prominent considerations. Recent work in this area has focussed on the sequential analysis of matched case-control studies with a dichotomous trait. In this paper, we extend the sequential approach to a comparison of the associations within two independent groups of paired continuous observations. Such a comparison is particularly relevant in familial studies of phenotypic correlation using twins. We develop a sequential twin method based on the intraclass correlation and show that use of sequential methodology can lead to a substantial reduction in the number of observations without compromising the study error rates. Additionally, our approach permits straightforward allowance for other explanatory factors in the analysis. We illustrate our method in a sequential heritability study of dysplasia that allows for the effect of body mass index and compares monozygotes with pairs of singleton sisters. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
The International Citicoline Trial in acUte Stroke is a sequential phase III study of the use of the drug citicoline in the treatment of acute ischaemic stroke, which was initiated in 2006 in 56 treatment centres. The primary objective of the trial is to demonstrate improved recovery of patients randomized to citicoline relative to those randomized to placebo after 12 weeks of follow-up. The primary analysis will take the form of a global test combining the dichotomized results of assessments on three well-established scales: the Barthel Index, the modified Rankin scale and the National Institutes of Health Stroke Scale. This approach was previously used in the analysis of the influential National Institute of Neurological Disorders and Stroke trial of recombinant tissue plasminogen activator in stroke. The purpose of this paper is to describe how this trial was designed, and in particular how the simultaneous objectives of taking into account three assessment scales, performing a series of interim analyses and conducting treatment allocation and adjusting the analyses to account for prognostic factors, including more than 50 treatment centres, were addressed. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
BACKGROUND: The widespread occurrence of feminized male fish downstream of some wastewater treatment works has led to substantial interest from ecologists and public health professionals. This concern stems from the view that the effects observed have a parallel in humans, and that both phenomena are caused by exposure to mixtures of contaminants that interfere with reproductive development. The evidence for a "wildlife-human connection" is, however, weak: Testicular dysgenesis syndrome, seen in human males, is most easily reproduced in rodent models by exposure to mixtures of antiandrogenic chemicals. In contrast, the accepted explanation for feminization of wild male fish is that it results mainly from exposure to steroidal estrogens originating primarily from human excretion. OBJECTIVES: We sought to further explore the hypothesis that endocrine disruption in fish is multi-causal, resulting from exposure to mixtures of chemicals with both estrogenic and antiandrogenic properties. METHODS: We used hierarchical generalized linear and generalized additive statistical modeling to explore the associations between modeled concentrations and activities of estrogenic and antiandrogenic chemicals in 30 U.K. rivers and feminized responses seen in wild fish living in these rivers. RESULTS: In addition to the estrogenic substances, antiandrogenic activity was prevalent in almost all treated sewage effluents tested. Further, the results of the modeling demonstrated that feminizing effects in wild fish could be best modeled as a function of their predicted exposure to both anti-androgens and estrogens or to antiandrogens alone. CONCLUSION: The results provide a strong argument for a multicausal etiology of widespread feminization of wild fish in U.K. rivers involving contributions from both steroidal estrogens and xeno-estrogens and from other (as yet unknown) contaminants with antiandrogenic properties. These results may add farther credence to the hypothesis that endocrine-disrupting effects seen in wild fish and in humans are caused by similar combinations of endocrine-disrupting chemical cocktails.
Resumo:
The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved in interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.
Resumo:
We argue that population modeling can add value to ecological risk assessment by reducing uncertainty when extrapolating from ecotoxicological observations to relevant ecological effects. We review other methods of extrapolation, ranging from application factors to species sensitivity distributions to suborganismal (biomarker and "-omics'') responses to quantitative structure activity relationships and model ecosystems, drawing attention to the limitations of each. We suggest a simple classification of population models and critically examine each model in an extrapolation context. We conclude that population models have the potential for adding value to ecological risk assessment by incorporating better understanding of the links between individual responses and population size and structure and by incorporating greater levels of ecological complexity. A number of issues, however, need to be addressed before such models are likely to become more widely used. In a science context, these involve challenges in parameterization, questions about appropriate levels of complexity, issues concerning how specific or general the models need to be, and the extent to which interactions through competition and trophic relationships can be easily incorporated.
Resumo:
This paper explores the theoretical developments and subsequent uptake of sequential methodology in clinical studies in the 25 years since Statistics in Medicine was launched. The review examines the contributions which have been made to all four phases into which clinical trials are traditionally classified and highlights major statistical advancements, together with assessing application of the techniques. The vast majority of work has been in the setting of phase III clinical trials and so emphasis will be placed here. Finally, comments are given indicating how the subject area may develop in the future.
Resumo:
This investigation deals with the question of when a particular population can be considered to be disease-free. The motivation is the case of BSE where specific birth cohorts may present distinct disease-free subpopulations. The specific objective is to develop a statistical approach suitable for documenting freedom of disease, in particular, freedom from BSE in birth cohorts. The approach is based upon a geometric waiting time distribution for the occurrence of positive surveillance results and formalizes the relationship between design prevalence, cumulative sample size and statistical power. The simple geometric waiting time model is further modified to account for the diagnostic sensitivity and specificity associated with the detection of disease. This is exemplified for BSE using two different models for the diagnostic sensitivity. The model is furthermore modified in such a way that a set of different values for the design prevalence in the surveillance streams can be accommodated (prevalence heterogeneity) and a general expression for the power function is developed. For illustration, numerical results for BSE suggest that currently (data status September 2004) a birth cohort of Danish cattle born after March 1999 is free from BSE with probability (power) of 0.8746 or 0.8509, depending on the choice of a model for the diagnostic sensitivity.
Resumo:
We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of evolutionary responses to climate change.