73 resultados para Sensing, Smartphone, Sensori
Resumo:
The statistics of cloud-base vertical velocity simulated by the non-hydrostatic mesoscale model AROME are compared with Cloudnet remote sensing observations at two locations: the ARM SGP site in Central Oklahoma, and the DWD observatory at Lindenberg, Germany. The results show that, as expected, AROME significantly underestimates the variability of vertical velocity at cloud-base compared to observations at their nominal resolution; the standard deviation of vertical velocity in the model is typically 4-6 times smaller than observed, and even more during the winter at Lindenberg. Averaging the observations to the horizontal scale corresponding to the physical grid spacing of AROME (2.5 km) explains 70-80% of the underestimation by the model. Further averaging of the observations in the horizontal is required to match the model values for the standard deviation in vertical velocity. This indicates an effective horizontal resolution for the AROME model of at least 4 times the physically-defined grid spacing. The results illustrate the need for special treatment of sub-grid scale variability of vertical velocities in kilometer-scale atmospheric models, if processes such as aerosol-cloud interactions are to be included in the future.
Resumo:
We assessed the potential for using optical functional types as effective markers to monitor changes in vegetation in floodplain meadows associated with changes in their local environment. Floodplain meadows are challenging ecosystems for monitoring and conservation because of their highly biodiverse nature. Our aim was to understand and explain spectral differences among key members of floodplain meadows and also characterize differences with respect to functional traits. The study was conducted on a typical floodplain meadow in UK (MG4-type, mesotrophic grassland type 4, according to British National Vegetation Classification). We compared two approaches to characterize floodplain communities using field spectroscopy. The first approach was sub-community based, in which we collected spectral signatures for species groupings indicating two distinct eco-hydrological conditions (dry and wet soil indicator species). The other approach was “species-specific”, in which we focused on the spectral reflectance of three key species found on the meadow. One herb species is a typical member of the MG4 floodplain meadow community, while the other two species, sedge and rush, represent wetland vegetation. We also monitored vegetation biophysical and functional properties as well as soil nutrients and ground water levels. We found that the vegetation classes representing meadow sub-communities could not be spectrally distinguished from each other, whereas the individual herb species was found to have a distinctly different spectral signature from the sedge and rush species. The spectral differences between these three species could be explained by their observed differences in plant biophysical parameters, as corroborated through radiative transfer model simulations. These parameters, such as leaf area index, leaf dry matter content, leaf water content, and specific leaf area, along with other functional parameters, such as maximum carboxylation capacity and leaf nitrogen content, also helped explain the species’ differences in functional dynamics. Groundwater level and soil nitrogen availability, which are important factors governing plant nutrient status, were also found to be significantly different for the herb/wetland species’ locations. The study concludes that spectrally distinguishable species, typical for a highly biodiverse site such as a floodplain meadow, could potentially be used as target species to monitor vegetation dynamics under changing environmental conditions.
Resumo:
The authors address the problems in using a fiber-optic proximity sensor to detect robot end-effector positioning errors in performing a contact task when uncertainties about target position exist. An extended Kalman filter approach is employed to solve the nonlinear filtering problem. Some experimental results are given.
Resumo:
The Soil Moisture and Ocean Salinity (SMOS) satellite marks the commencement of dedicated global surface soil moisture missions, and the first mission to make passive microwave observations at L-band. On-orbit calibration is an essential part of the instrument calibration strategy, but on-board beam-filling targets are not practical for such large apertures. Therefore, areas to serve as vicarious calibration targets need to be identified. Such sites can only be identified through field experiments including both in situ and airborne measurements. For this purpose, two field experiments were performed in central Australia. Three areas are studied as follows: 1) Lake Eyre, a typically dry salt lake; 2) Wirrangula Hill, with sparse vegetation and a dense cover of surface rock; and 3) Simpson Desert, characterized by dry sand dunes. Of those sites, only Wirrangula Hill and the Simpson Desert are found to be potentially suitable targets, as they have a spatial variation in brightness temperatures of <4 K under normal conditions. However, some limitations are observed for the Simpson Desert, where a bias of 15 K in vertical and 20 K in horizontal polarization exists between model predictions and observations, suggesting a lack of understanding of the underlying physics in this environment. Subsequent comparison with model predictions indicates a SMOS bias of 5 K in vertical and 11 K in horizontal polarization, and an unbiased root mean square difference of 10 K in both polarizations for Wirrangula Hill. Most importantly, the SMOS observations show that the brightness temperature evolution is dominated by regular seasonal patterns and that precipitation events have only little impact.
Resumo:
Contrails and especially their evolution into cirrus-like clouds are thought to have very important effects on local and global radiation budgets, though are generally not well represented in global climate models. Lack of contrail parameterisations is due to the limited availability of in situ contrail measurements which are difficult to obtain. Here we present a methodology for successful sampling and interpretation of contrail microphysical and radiative data using both in situ and remote sensing instrumentation on board the FAAM BAe146 UK research aircraft as part of the COntrails Spreading Into Cirrus (COSIC) study.
Resumo:
Radiometric data in the visible domain acquired by satellite remote sensing have proven to be powerful for monitoring the states of the ocean, both physical and biological. With the help of these data it is possible to understand certain variations in biological responses of marine phytoplankton on ecological time scales. Here, we implement a sequential data-assimilation technique to estimate from a conventional nutrient–phytoplankton–zooplankton (NPZ) model the time variations of observed and unobserved variables. In addition, we estimate the time evolution of two biological parameters, namely, the specific growth rate and specific mortality of phytoplankton. Our study demonstrates that: (i) the series of time-varying estimates of specific growth rate obtained by sequential data assimilation improves the fitting of the NPZ model to the satellite-derived time series: the model trajectories are closer to the observations than those obtained by implementing static values of the parameter; (ii) the estimates of unobserved variables, i.e., nutrient and zooplankton, obtained from an NPZ model by implementation of a pre-defined parameter evolution can be different from those obtained on applying the sequences of parameters estimated by assimilation; and (iii) the maximum estimated specific growth rate of phytoplankton in the study area is more sensitive to the sea-surface temperature than would be predicted by temperature-dependent functions reported previously. The overall results of the study are potentially useful for enhancing our understanding of the biological response of phytoplankton in a changing environment.
Resumo:
A dynamic size-structured model is developed for phytoplankton and nutrients in the oceanic mixed layer and applied to extract phytoplankton biomass at discrete size fractions from remotely sensed, ocean-colour data. General relationships between cell size and biophysical processes (such as sinking, grazing, and primary production) of phytoplankton were included in the model through a bottom–up approach. Time-dependent, mixed-layer depth was used as a forcing variable, and a sequential data-assimilation scheme was implemented to derive model trajectories. From a given time-series, the method produces estimates of size-structured biomass at every observation, so estimates seasonal succession of individual phytoplankton size, derived here from remote sensing for the first time. From these estimates, normalized phytoplankton biomass size spectra over a period of 9 years were calculated for one location in the North Atlantic. Further analysis demonstrated that strong relationships exist between the seasonal trends of the estimated size spectra and the mixed-layer depth, nutrient biomass, and total chlorophyll. The results contain useful information on the time-dependent biomass flux in the pelagic ecosystem.
Resumo:
Remote sensing offers many advantages in the development of ecosystem indicators for the pelagic zone of the ocean. Particularly suitable in this context are the indicators arising from time series that can be constructed from remotely sensed data. For example, using ocean-colour radiometry, the phenology of phytoplankton blooms can be assessed. Metrics defined in this way show promise as informative indicators for the entire pelagic ecosystem. A simple phytoplankton–substrate model, with forcing dependent on latitude and day number is used to explore the qualitative features of bloom phenology for comparison with the results observed in a suite of 10-year time series of chlorophyll concentration, as assessed by remote sensing, from the Northwest Atlantic Ocean. The model reveals features of the dynamics that might otherwise have been overlooked in evaluation of the observational data.
Resumo:
Potassium and phosphorus are important macronutrients for crops but are often deficient in the field. Very little is known about how plants sense fluctuations in K and P and how information about K and P availability is integrated at the whole plant level into physiological and metabolic adaptations. This chapter reviews recent advances in discovering molecular responses of plants to K and P deficiency by microarray experiments. These studies provide us not only with a comprehensive picture of adaptive mechanisms, but also with a large number of transcriptional markers that can be used to identify upstream components of K and P signalling pathways. On the basis of the available information we discuss putative receptors and signals involved in the sensing and integration of K and P status both at the cellular and at the whole plant level. These involve membrane potential, voltage-dependent ion channels, intracellular Ca and pH, and transcription factors, as well as hormones and metabolites for systemic signalling. Genetic screens of reporter lines for transcriptional markers and metabolome analysis of K- and P-deficient plants are likely to further advance our knowledge in this area in the near future.
Resumo:
The interfacial behavior of the model amyloid peptide octamer YYKLVFFC (peptide 1) and two other amyloid peptides YEVHHQKLVFF (peptide 2) and KKLVFFA (peptide 3) at the metal|aqueous solution interface was studied by voltammetric and constant current chronopotentiometric stripping (CPS). All three peptides are adsorbed in a wide potential range and exhibit different interfacial organizations depending on the electrode potential. At the least negative potentials, chemisorption of peptide 1 occurs through the formation of a metal sulfur bond. This bond is broken close to −0.6 V. The peptide undergoes self-association at more negative potentials, leading to the formation of a “pit” characteristic of a 2D condensed film. Under the same conditions the other peptides do not produce such a pit. Formation of the 2D condensed layer in peptide 1 is supported by the time, potential and temperature dependences of the interfacial capacity and it is shown that presence of the 2D layer is reflected by the peptide CPS signals due to the catalytic hydrogen evolution. The ability of peptide 1 to form the potential-dependent 2D condensed layer has been reported neither for any other peptide nor for any protein molecule. This ability might be related to the well-known oligomerization and aggregation of Alzheimer amyloid peptides.
Resumo:
A global aerosol transport model (Oslo CTM2) with main aerosol components included is compared to five satellite retrievals of aerosol optical depth (AOD) and one data set of the satellite-derived radiative effect of aerosols. The model is driven with meteorological data for the period November 1996 to June 1997 which is the time period investigated in this study. The modelled AOD is within the range of the AOD from the various satellite retrievals over oceanic regions. The direct radiative effect of the aerosols as well as the atmospheric absorption by aerosols are in both cases found to be of the order of 20 Wm−2 in certain regions in both the satellite-derived and the modelled estimates as a mean over the period studied. Satellite and model data exhibit similar patterns of aerosol optical depth, radiative effect of aerosols, and atmospheric absorption of the aerosols. Recently published results show that global aerosol models have a tendency to underestimate the magnitude of the clear-sky direct radiative effect of aerosols over ocean compared to satellite-derived estimates. However, this is only to a small extent the case with the Oslo CTM2. The global mean direct radiative effect of aerosols over ocean is modelled with the Oslo CTM2 to be –5.5 Wm−2 and the atmospheric aerosol absorption 1.5 Wm−2.
Resumo:
We present a summary of the principal physical and optical properties of aerosol particles using the FAAM BAE-146 instrumented aircraft during ADRIEX between 27 August and 6 September 2004, augmented by sunphotometer, lidar and satellite retrievals. Observations of anthropogenic aerosol, principally from industrial sources, were concentrated over the northern Adriatic Sea and over the Po Valley close to the aerosol sources. An additional flight was also carried out over the Black Sea to compare east and west European pollution. Measurements show the single-scattering albedo of dry aerosol particles to vary considerably between 0.89 and 0.97 at a wavelength of 0.55 μm, with a campaign mean within the polluted lower free troposphere of 0.92. Although aerosol concentrations varied significantly from day to day and during individual days, the shape of the aerosol size distribution was relatively consistent through the experiment, with no detectable change observed over land and over sea. There is evidence to suggest that the pollution aerosol within the marine boundary layer was younger than that in the elevated layer. Trends in the aerosol volume distribution show consistency with multiple-site AERONET radiometric observations. The aerosol optical depths derived from aircraft measurements show a consistent bias to lower values than both the AERONET and lidar ground-based radiometric observations, differences which can be explained by local variations in the aerosol column loading and by some aircraft instrumental artefacts. Retrievals of the aerosol optical depth and fine-mode (<0.5 μm radius) fraction contribution to the optical depth using MODIS data from the Terra and Aqua satellites show a reasonable level of agreement with the AERONET and aircraft measurements.
Resumo:
The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors that have a role in embryonic development, but are primarily known for modulating energy metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently, there is no consensus as to the overall combined function of PPARs and why they evolved. We hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection, but the latter increases oxidative stress and may reduce median survival (functional longevity). In a sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum, where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species, ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore postulate that inflammation-induced PPAR downregulation engenders many of the signs and symptoms of the metabolic syndrome, which shares many features with the acute phase response (APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related inflammatory signal induced by excessive calories and reduced physical activity, which normally couples energy storage with the ability to mount an immune response. This is further worsened when pancreatic decompensation occurs, resulting in gluco-oxidative stress and lipotoxicity, increased inflammatory insulin resistance and oxidative stress. Reactivating PPARs may restore a metabolic balance and help to adapt the phenotype to a modern lifestyle.