51 resultados para Semi-infinite and infinite programming
Resumo:
Above a critical chain length, where oligomers contain five or more recognition units, apparently infinite donor–acceptor polypseudorotaxanes are formed in the solid state. X-ray crystallographic analyses of three different examples have shown that although the oligomeric chains are undoubtedly discrete and monodisperse, they nevertheless appear to be infinite in the crystal.
Resumo:
We consider the Dirichlet boundary-value problem for the Helmholtz equation in a non-locally perturbed half-plane. This problem models time-harmonic electromagnetic scattering by a one-dimensional, infinite, rough, perfectly conducting surface; the same problem arises in acoustic scattering by a sound-soft surface. ChandlerWilde & Zhang have suggested a radiation condition for this problem, a generalization of the Rayleigh expansion condition for diffraction gratings, and uniqueness of solution has been established. Recently, an integral equation formulation of the problem has also been proposed and, in the special case when the whole boundary is both Lyapunov and a small perturbation of a flat boundary, the unique solvability of this integral equation has been shown by Chandler-Wilde & Ross by operator perturbation arguments. In this paper we study the general case, with no limit on surface amplitudes or slopes, and show that the same integral equation has exactly one solution in the space of bounded and continuous functions for all wavenumbers. As an important corollary we prove that, for a variety of incident fields including the incident plane wave, the Dirichlet boundary-value problem for the scattered field has a unique solution.
Resumo:
Consider the Dirichlet boundary value problem for the Helmholtz equation in a non-locally perturbed half-plane with an unbounded, piecewise Lyapunov boundary. This problem models time-harmonic electromagnetic scattering in transverse magnetic polarization by one-dimensional rough, perfectly conducting surfaces. A radiation condition is introduced for the problem, which is a generalization of the usual one used in the study of diffraction by gratings when the solution is quasi-periodic, and allows a variety of incident fields including an incident plane wave to be included in the results obtained. We show in this paper that the boundary value problem for the scattered field has at most one solution. For the case when the whole boundary is Lyapunov and is a small perturbation of a flat boundary we also prove existence of solution and show a limiting absorption principle.
Resumo:
The paper considers second kind integral equations of the form $\phi (x) = g(x) + \int_S {k(x,y)} \phi (y)ds(y)$ (abbreviated $\phi = g + K\phi $), in which S is an infinite cylindrical surface of arbitrary smooth cross section. The “truncated equation” (abbreviated $\phi _a = E_a g + K_a \phi _a $), obtained by replacing S by $S_a $, a closed bounded surface of class $C^2 $, the boundary of a section of the interior of S of length $2a$, is also discussed. Conditions on k are obtained (in particular, implying that K commutes with the operation of translation in the direction of the cylinder axis) which ensure that $I - K$ is invertible, that $I - K_a $ is invertible and $(I - K_a )^{ - 1} $ is uniformly bounded for all sufficiently large a, and that $\phi _a $ converges to $\phi $ in an appropriate sense as $a \to \infty $. Uniform stability and convergence results for a piecewise constant boundary element collocation method for the truncated equations are also obtained. A boundary integral equation, which models three-dimensional acoustic scattering from an infinite rigid cylinder, illustrates the application of the above results to prove existence of solution (of the integral equation and the corresponding boundary value problem) and convergence of a particular collocation method.
Resumo:
We consider the billiard dynamics in a non-compact set of ℝ d that is constructed as a bi-infinite chain of translated copies of the same d-dimensional polytope. A random configuration of semi-dispersing scatterers is placed in each copy. The ensemble of dynamical systems thus defined, one for each global realization of the scatterers, is called quenched random Lorentz tube. Under some fairly general conditions, we prove that every system in the ensemble is hyperbolic and almost every system is recurrent, ergodic, and enjoys some higher chaotic properties.