88 resultados para Second order moment functions
Resumo:
We analyze a fully discrete spectral method for the numerical solution of the initial- and periodic boundary-value problem for two nonlinear, nonlocal, dispersive wave equations, the Benjamin–Ono and the Intermediate Long Wave equations. The equations are discretized in space by the standard Fourier–Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L2-error bound of spectral accuracy in space and of second-order accuracy in time.
Resumo:
It has been proposed that there is a core impairment in autism spectrum conditions (ASC) to the mirror neuron system (MNS): If observed actions cannot be mapped onto the motor commands required for performance, higher order sociocognitive functions that involve understanding another person's perspective, such as theory of mind, may be impaired. However, evidence of MNS impairment in ASC is mixed. The present study used an 'automatic imitation' paradigm to assess MNS functioning in adults with ASC and matched controls, when observing emotional facial actions. Participants performed a pre-specified angry or surprised facial action in response to observed angry or surprised facial actions, and the speed of their action was measured with motion tracking equipment. Both the ASC and control groups demonstrated automatic imitation of the facial actions, such that responding was faster when they acted with the same emotional expression that they had observed. There was no difference between the two groups in the magnitude of the effect. These findings suggest that previous apparent demonstrations of impairments to the MNS in ASC may be driven by a lack of visual attention to the stimuli or motor sequencing impairments, and therefore that there is, in fact, no MNS impairment in ASC. We discuss these findings with reference to the literature on MNS functioning and imitation in ASC, as well as theories of the role of the MNS in sociocognitive functioning in typical development.
Resumo:
Molecular dynamics simulations of the photodissociated state of carbonmonoxy myoglobin (MbCO) are presented using a fluctuating charge model for CO. A new three-point charge model is fitted to high-level ab initio calculations of the dipole and quadrupole moment functions taken from the literature. The infrared spectrum of the CO molecule in the heme pocket is calculated using the dipole moment time autocorrelation function and shows good agreement with experiment. In particular, the new model reproduces the experimentally observed splitting of the CO absorption spectrum. The splitting of 3–7 cm−1 (compared to the experimental value of 10 cm−1) can be directly attributed to the two possible orientations of CO within the docking site at the edge of the distal heme pocket (the B states), as previously suggested on the basis of experimental femtosecond time-resolved infrared studies. Further information on the time evolution of the position and orientation of the CO molecule is obtained and analyzed. The calculated difference in the free energy between the two possible orientations (Fe···CO and Fe···OC) is 0.3 kcal mol−1 and agrees well with the experimentally estimated value of 0.29 kcal mol−1. A comparison of the new fluctuating charge model with an established fixed charge model reveals some differences that may be critical for the correct prediction of the infrared spectrum and energy barriers. The photodissociation of CO from the myoglobin mutant L29F using the new model shows rapid escape of CO from the distal heme pocket, in good agreement with recent experimental data. The effect of the protein environment on the multipole moments of the CO ligand is investigated and taken into account in a refined model. Molecular dynamics simulations with this refined model are in agreement with the calculations based on the gas-phase model. However, it is demonstrated that even small changes in the electrostatics of CO alter the details of the dynamics.
Resumo:
Time-resolved studies of germylene, GeH2, generated by laser. ash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate coefficients for its bimolecular reaction with C2D2. The reaction was studied in the gas phase, mainly at a total pressure of 1.3 kPa (in SF6 bath gas) at five temperatures in the range 298-558 K. Pressure variation measurements over the range 0.13-13 kPa ( SF6) at 298, 397 and 558 K revealed a small pressure dependence but only at 558 K. After correction for this, the second-order rate coefficients gave the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.96 +/- 0.05) + ( 6.16 +/- 0.37 kJ mol(-1))/RT ln 10 Comparison with the reaction of GeH2 + C2H2 (studied earlier) showed a similar behaviour with almost identical rate coefficients. The lack of a significant isotope effect is consistent with a rate-determining addition process and is explained by irreversible decomposition of the reaction intermediate to give Ge(P-3) + C2H4. This result contrasts with that for GeH2 + C2H4/C2D4 and those for the analogous silylene reactions. The underlying reasons for this are discussed.
Resumo:
Time-resolved studies of chlorosilylene, ClSiH, generated by the 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene, are carried out to obtain rate constants for its bimolecular reaction with ethene, C2H4, in the gas-phase. The reaction is studied over the pressure range 0.13-13.3 kPa (with added SF6) at five temperatures in the range 296-562 K. The second order rate constants, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1))=(-10.55 +/- 0.10) + (3.86 +/- 0.70) kJ mol(-1)/RT ln10. The Arrhenius parameters correspond to a loose transition state and the rate constant at room temperature is 43% of that for SiH2 + C2H4, showing that the deactivating effect of Cl-for-H substitution in the silylene is not large. Quantum chemical calculations of the potential energy surface for this reaction at the G3MP2//B3LYP level show that, as well as 1-chlorosilirane, ethylchlorosilylene is a viable product. The calculations reveal how the added effect of the Cl atom on the divalent state stabilisation of ClSiH influences the course of this reaction. RRKM calculations of the reaction pressure dependence suggest that ethylchlorosilylene should be the main product. The results are compared and contrasted with those of SiH2 and SiCl2 with C2H4.
Resumo:
Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with oxirane, oxetane, and tetrahydrofuran (THF). The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at four or five temperatures in the range 294-605 K. All three reactions showed pressure dependences characteristic of third-body-assisted association reactions with, surprisingly, SiH2 + oxirane showing the least and SiH2 + THF showing the most pressure dependence. The second-order rate constants obtained by extrapolation to the high-pressure limits at each temperature fitted the Arrhenius equations where the error limits are single standard deviations: log(k(oxirane)(infinity)/cm(3) molecule(-1) s(-1)) = (-11.03 +/- 0.07) + (5.70 +/- 0.51) kJ mol(-1)/RT In 10 log(k(oxetane)(infinity)/cm(3) molecule(-1) s(-1)) = (-11.17 +/- 0.11) + (9.04 +/- 0.78) kJ mol(-1)/RT In 10 log(k(THF)(infinity)/cm(3) molecule(-1) s(-1)) = (-10.59 +/- 0.10) + (5.76 +/- 0.65) kJ mol(-1)/RT In 10 Binding-energy values of 77, 97, and 92 kJ mol(-1) have been obtained for the donor-acceptor complexes of SiH2 with oxirane, oxetane, and THF, respectively, by means of quantum chemical (ab initio) calculations carried Out at the G3 level. The use of these values to model the pressure dependences of these reactions, via RRKM theory, provided a good fit only in the case of SiH2 + THF. The lack of fit in the other two cases is attributed to further reaction pathways for the association complexes of SiH2 with oxirane and oxetane. The finding of ethene as a product of the SiH2 + oxirane reaction supports a pathway leading to H2Si=O + C2H4 predicted by the theoretical calculations of Apeloig and Sklenak.
Resumo:
Time-resolved kinetic studies of the reaction of germylene, GeH2, generated by laser. ash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with 2-butyne, CH3C CCH3. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 300-556 K. The second order rate constants obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.46 +/- 10.06) + (5.16 +/- 10.47) kJ mol(-1)/ RT ln 10 Calculations of the energy surface of the GeC4H8 reaction system were carried out employing the additivity principle, by combining previous quantum chemical calculations of related reaction systems. These support formation of 1,2-dimethylvinylgermylene (rather than 2,3-dimethylgermirene) as the end product. RRKM calculations of the pressure dependence of the reaction are in reasonable agreement with this finding. The reactions of GeH2 with C2H2 and with CH3CRCCH3 are compared and contrasted.
Resumo:
Time-resolved kinetic studies of the reactions of silylene, SiH2, and dideutero-silylene, SiD2, generated by laser. ash photolysis of phenylsilane and phenylsilane-d(3), respectively, have been carried out to obtain rate coefficients for their bimolecular reactions with 2-butyne, CH3C CCH3. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas at five temperatures in the range 294-612 K. The second-order rate coefficients, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equations where the error limits are single standard deviations: log(k(H)(infinity)/cm(3) molecule(-1) s(-1)) = (-9.67 +/- 0.04) + (1.71 +/- 0.33) kJ mol(-1)/RTln10 log(k(D)(infinity)/cm(3) molecule(-1) s(-1)) = (-9.65 +/- 0.01) + (1.92 +/- 0.13) kJ mol(-1)/RTln10 Additionally, pressure-dependent rate coefficients for the reaction of SiH2 with 2-butyne in the presence of He (1-100 Torr) were obtained at 301, 429 and 613 K. Quantum chemical (ab initio) calculations of the SiC4H8 reaction system at the G3 level support the formation of 2,3-dimethylsilirene [cyclo-SiH2C(CH3)=C(CH3)-] as the sole end product. However, reversible formation of 2,3-dimethylvinylsilylene [CH3CH=C(CH3)SiH] is also an important process. The calculations also indicate the probable involvement of several other intermediates, and possible products. RRKM calculations are in reasonable agreement with the pressure dependences at an enthalpy value for 2,3-dimethylsilirene fairly close to that suggested by the ab initio calculations. The experimental isotope effects deviate significantly from those predicted by RRKM theory. The differences can be explained by an isotopic scrambling mechanism, involving H - D exchange between the hydrogens of the methyl groups and the D-atoms in the ring in 2,3-dimethylsilirene-1,1-d(2). A detailed mechanism involving several intermediate species, which is consistent with the G3 energy surface, is proposed to account for this.
Resumo:
Many techniques are currently used for motion estimation. In the block-based approaches the most common procedure applied is the block-matching based on various algorithms. To refine the motion estimates resulting from the full search or any coarse search algorithm, one can find few applications of Kalman filtering, mainly in the intraframe scheme. The Kalman filtering technique applicability for block-based motion estimation is rather limited due to discontinuities in the dynamic behaviour of the motion vectors. Therefore, we propose an application of the concept of the filtering by approximated densities (FAD). The FAD, originally introduced to alleviate limitations due to conventional Kalman modelling, is applied to interframe block-motion estimation. This application uses a simple form of FAD involving statistical characteristics of multi-modal distributions up to second order.
Resumo:
This article describes a number of velocity-based moving mesh numerical methods formultidimensional nonlinear time-dependent partial differential equations (PDEs). It consists of a short historical review followed by a detailed description of a recently developed multidimensional moving mesh finite element method based on conservation. Finite element algorithms are derived for both mass-conserving and non mass-conserving problems, and results shown for a number of multidimensional nonlinear test problems, including the second order porous medium equation and the fourth order thin film equation as well as a two-phase problem. Further applications and extensions are referenced.
Resumo:
The aim of the work was to study the survival of Lactobacillus plantarum NCIMB 8826 in model solutions and develop a mathematical model describing its dependence on pH, citric acid and ascorbic acid. A Central Composite Design (CCD) was developed studying each of the three factors at five levels within the following ranges, i.e., pH (3.0-4.2), citric acid (6-40 g/L), and ascorbic acid (100-1000 mg/L). In total, 17 experimental runs were carried out. The initial cell concentration in the model solutions was approximately 1 × 10(8)CFU/mL; the solutions were stored at 4°C for 6 weeks. Analysis of variance (ANOVA) of the stepwise regression demonstrated that a second order polynomial model fits well the data. The results demonstrated that high pH and citric acid concentration enhanced cell survival; one the other hand, ascorbic acid did not have an effect. Cell survival during storage was also investigated in various types of juices, including orange, grapefruit, blackcurrant, pineapple, pomegranate, cranberry and lemon juice. The model predicted well the cell survival in orange, blackcurrant and pineapple, however it failed to predict cell survival in grapefruit and pomegranate, indicating the influence of additional factors, besides pH and citric acid, on cell survival. Very good cell survival (less than 0.4 log decrease) was observed after 6 weeks of storage in orange, blackcurrant and pineapple juice, all of which had a pH of about 3.8. Cell survival in cranberry and pomegranate decreased very quickly, whereas in the case of lemon juice, the cell concentration decreased approximately 1.1 logs after 6 weeks of storage, albeit the fact that lemon juice had the lowest pH (pH~2.5) among all the juices tested. Taking into account the results from the compositional analysis of the juices and the model, it was deduced that in certain juices, other compounds seemed to protect the cells during storage; these were likely to be proteins and dietary fibre In contrast, in certain juices, such as pomegranate, cell survival was much lower than expected; this could be due to the presence of antimicrobial compounds, such as phenolic compounds.
Resumo:
The synthesis of galactooligosaccharides (GOS) by whole cells of Bifidobacterium bifidum NCIMB 41171 was investigated by developing a set of mathematical models. These were second order polynomial equations, which described responses related to the production of GOS constituents, the selectivity of lactose conversion into GOS, and the relative composition of the produced GOS mixture, as a function of the amount of biocatalyst, temperature, initial lactose concentration, and time. The synthesis reactions were followed for up to 36 h. Samples were withdrawn every 4 h, tested for β-galactosidase activity, and analysed for their carbohydrate content. GOS synthesis was well explained by the models, which were all significant (P < 0.001). The GOS yield increased as temperature increased from 40 °C to 60 °C, as transgalactosylation became more pronounced compared to hydrolysis. The relative composition of GOS produced changed significantly with the initial lactose concentration (P < 0.001); higher ratios of tri-, tetra-, and penta-galactooligosaccharides to transgalactosylated disaccharides were obtained as lactose concentration increased. Time was a critical factor, as a balanced state between GOS synthesis and hydrolysis was roughly attained in most cases between 12 and 20 h, and was followed by more pronounced GOS hydrolysis than synthesis.
Resumo:
Although brand equity is an important source of competitive advantage online, previous conceptualisations and measures overlook the unique characteristics of the internet that render consumers co-creators of brand value. In view of this, a threephased research programme was undertaken to identify the facets of online retail/service (ORS) brand equity and then develop and validate a scale for its measurement. ORS brand equity was found to be a second order construct with five correlated yet distinct dimensions: emotional connection, online experience, responsive service nature, trust, and fulfilment. A series of tests showed that the ensuing 12-item scale has strong psychometric properties. The implications of this research for marketing researchers and practitioners are discussed.
Resumo:
We consider two weakly coupled systems and adopt a perturbative approach based on the Ruelle response theory to study their interaction. We propose a systematic way of parameterizing the effect of the coupling as a function of only the variables of a system of interest. Our focus is on describing the impacts of the coupling on the long term statistics rather than on the finite-time behavior. By direct calculation, we find that, at first order, the coupling can be surrogated by adding a deterministic perturbation to the autonomous dynamics of the system of interest. At second order, there are additionally two separate and very different contributions. One is a term taking into account the second-order contributions of the fluctuations in the coupling, which can be parameterized as a stochastic forcing with given spectral properties. The other one is a memory term, coupling the system of interest to its previous history, through the correlations of the second system. If these correlations are known, this effect can be implemented as a perturbation with memory on the single system. In order to treat this case, we present an extension to Ruelle's response theory able to deal with integral operators. We discuss our results in the context of other methods previously proposed for disentangling the dynamics of two coupled systems. We emphasize that our results do not rely on assuming a time scale separation, and, if such a separation exists, can be used equally well to study the statistics of the slow variables and that of the fast variables. By recursively applying the technique proposed here, we can treat the general case of multi-level systems.
Resumo:
Feedback design for a second-order control system leads to an eigenstructure assignment problem for a quadratic matrix polynomial. It is desirable that the feedback controller not only assigns specified eigenvalues to the second-order closed loop system but also that the system is robust, or insensitive to perturbations. We derive here new sensitivity measures, or condition numbers, for the eigenvalues of the quadratic matrix polynomial and define a measure of the robustness of the corresponding system. We then show that the robustness of the quadratic inverse eigenvalue problem can be achieved by solving a generalized linear eigenvalue assignment problem subject to structured perturbations. Numerically reliable methods for solving the structured generalized linear problem are developed that take advantage of the special properties of the system in order to minimize the computational work required. In this part of the work we treat the case where the leading coefficient matrix in the quadratic polynomial is nonsingular, which ensures that the polynomial is regular. In a second part, we will examine the case where the open loop matrix polynomial is not necessarily regular.