60 resultados para Schleswig-Holstein
Resumo:
Recent studies have illustrated the effects of cis-9, trans-11 conjugated linoleic acid (CLA) on human health. Ruminant-derived meat, milk and dairy products are the predominant sources of cis-9, trans-11 CLA in the human diet. This study evaluated the processing properties, texture, storage characteristics, and organoleptic properties of UHT milk, Caerphilly cheese, and butter produced from a milk enriched to a level of cis-9, trans-11 CLA that has been shown to have biological effects in humans. Forty-nine early-lactation Holstein-British Friesian cows were fed total mixed rations containing 0 (control) or 45 g/kg ( on dry matter basis) of a mixture (1:2 wt/wt) of fish oil and sunflower oil during two consecutive 7-d periods to produce a control and CLA-enhanced milk, respectively. Milk produced from cows fed the control and fish and sunflower oil diets contained 0.54 and 4.68 g of total CLA/100 g of fatty acids, respectively. Enrichment of CLA in raw milk from the fish and sunflower oil diet was also accompanied by substantial increases in trans C18:1 levels, lowered C18: 0, cis-C18:1, and total saturated fatty acid concentrations, and small increases in n-3 polyunsaturated fatty acid content. The CLA-enriched milk was used for the manufacture of UHT milk, butter, and cheese. Both the CLA-enhanced butter and cheese were less firm than control products. Although the sensory profiles of the CLA-enriched milk, butter, and cheese differed from those of the control products with respect to some attributes, the overall impression and flavor did not differ. In conclusion, it is feasible to produce CLA-enriched dairy products with acceptable storage and sensory characteristics.
Resumo:
The aroma volatiles of grilled beef, from animals fed either grass silage or cereal concentrates, were compared. Aberdeen Angus and Holstein-Friesian cross-breed steers, slaughtered at 14 or 24 months, were studied. Compounds formed from linoleic acid, in particular 2-pentylfuran, 1-octen-3-ol, (Z)-2-octen-1-ol, and hexanal were at higher levels in the meat from the animals fed concentrates. Phytenes and compounds formed from α-linolenic acid, in particular 1-penten-3-ol and (Z)-2-penten-1-ol, were at higher levels in the meat of animals fed silage. Differences due to breed were small and not consistent with slaughter age. Dimethyl disulfide, dimethyl disulfide and phenol were at higher levels in the meat of animals slaughtered at 24 months and may contribute to grilled beef aroma.
Resumo:
The effects of increased postruminal supply of casein, corn starch, and soybean oil on plasma concentrations of the gastrointestinal hormones ghrelin and oxyntomodulin (OXM) were investigated. Four mid-lactation Holstein cows were used in a 4×4 Latin square. Treatments were continuous abomasal infusions (23h/d) for 7 d of water, soybean oil (500g/d), corn starch (1100g/d), or casein (800g/d). Jugular vein plasma was obtained every 30min for 7h on days 1 and 7. Soybean oil and casein infusion decreased preprandial plasma ghrelin concentration by approximately 20% on both d (time-by-treatment P<0.10); however, dry matter intake (DMI) was depressed only after 7 d of oil infusion. Infusion of soybean oil, corn starch, or casein did not change the plasma OXM concentration (P>0.20). The present data indicate that plasma ghrelin concentration is depressed immediately before feeding by the postruminal infusion of soybean oil and casein, but it is not affected during the postprandial period. Plasma ghrelin concentration was not altered (P>0.20), pre- or postfeeding, by increased postruminal supply of corn starch. In addition, plasma OXM concentration did not respond (P>0.20) to postruminal nutrient infusion. In conclusion, a decrease in DMI when fat is infused could be partially explained by the decrease in prefeeding plasma ghrelin concentration, but a decrease in prefeeding plasma ghrelin concentration is not always associated with a decrease in DMI, as observed for the infusion of casein. Plasma OXM concentration was not affected by postruminal infusion of macronutrients.
Resumo:
Six Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic plasma concentrations of gut peptides. The experimental design was a randomized block design with repeated measurements. Cows were assigned to one of 2 treatments: control or infusion of 1,500 g of glucose/d into the abomasum from the day of parturition to 29 d in milk. Cows were sampled 12 ± 6 d prepartum and at 4, 15, and 29 d in milk. Concentrations of glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1(7–36) amide, and oxyntomodulin were measured in pooled samples within cow and sampling day, whereas active ghrelin was measured in samples obtained 30 min before and after feeding at 0800 h. Postpartum, dry matter intake increased at a lower rate with infusion compared with the control. Arterial, portal venous, and hepatic venous plasma concentrations of the measured gut peptides were unaffected by abomasal glucose infusion. The arterial, portal venous, and hepatic venous plasma concentrations of glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1(7–36) amide increased linearly from 12 d prepartum to 29 d postpartum. Plasma concentrations of oxyntomodulin were unaffected by day relative to parturition. Arterial and portal venous plasma concentrations of ghrelin were lower postfeeding compared with prefeeding concentrations. Arterial plasma concentrations of ghrelin were greatest prepartum and lowest at 4 d postpartum, giving a quadratic pattern of change over the transition period. Positive portal venous-arterial and hepatic venous–arterial concentration differences were observed for glucagon-like peptide 1(7–36) amide. A negative portal venous–arterial concentration difference was observed for ghrelin pre-feeding. The remaining portal venous–arterial and hepatic venous–arterial concentration differences of gut peptides did not differ from zero. In conclusion, increased postruminal glucose supply to postpartum transition dairy cows reduced feed intake relative to control cows, but did not affect arterial, portal venous, or hepatic venous plasma concentrations of gut peptide hormones. Instead, gut peptide plasma concentrations increased as lactation progressed. Thus, the lower feed intake of postpartum dairy cows receiving abomasal glucose infusion was not attributable to changes in gut peptide concentrations.
Resumo:
Multiparous rumen-fistulated Holstein cows were fed, from d 1 to 28 post-calving, an ad libitum TMR containing (g/kg DM) grass silage (196), corn silage (196), wheat (277), soybean meal (100), and other feeds (231) with CP, NDF, starch and water soluble carbohydrate concentrations of 176, 260, 299 and 39 g/kg DM respectively and ME of 12.2 MJ/kg DM. Treatments consisting of a minimum of 1010 cfu Megasphaera elsdenii NCIMB 41125 in 250 ml solution (MEGA) or 250 ml of autoclaved M. elsdenii (CONT) were administered via the rumen cannula on d 3 and 12 of lactation (n=7 per treatment). Mid-rumen pH was measured every 15 minutes and eating and ruminating behavior was recorded for 24 h on d 2, 4, 6, 8, 11, 13, 15, 17, 22 and 28. Rumen fluid for VFA and lactic acid (LA) analysis was collected at 11 timepoints on each of d 2, 4, 6, 13 and 15. Data were analysed as repeated measures using the Glimmix (LA data) or Mixed (all other data) procedures of SAS with previous 305 d milk yield and d 2 measurements as covariates where appropriate. Milk yield was higher (CONT 43.0 vs MEGA 45.4 ±0.75 kg/d, P=0.051) and fat concentration was lower (CONT 45.6 vs MEGA 40.4 ±1.05 g/kg, P=0.005) in cows that received MEGA. Time spent eating (263 ±15 min/d) and ruminating (571 ±13 min/d), DM intake (18.4 ±0.74 kg/d), proportion of each 24 h period with rumen pH below 5.6 (3.69 ±0.94 h) and LA concentrations (2.00 mM) were similar (P>0.327) across treatments. Ruminal total VFA concentration (104 ±3 mM) was similar (P=0.404) across treatments, but a shift from acetate (CONT 551 vs MEGA 524 ±14 mmol/mol VFA, P=0.161) to propionate production (CONT 249 vs MEGA 275 ±11 mmol/mol VFA, P=0.099) meant that the acetate:propionate ratio (CONT 2.33 vs MEGA 1.94 ±0.15) was reduced (P=0.072) in cows that received MEGA. This study provides evidence that supplementation of early lactation dairy cows with MEGA alters rumen fermentation patterns in favour of propionate, with potential benefits for animal health and productivity.
Resumo:
In most Western countries, saturated fatty acid (SFA) intake exceeds recommended levels, which is considered a risk factor for cardiovascular disease (CVD). As milk and dairy products are major contributors to SFA intake in many countries, recent research has focused on sustainable methods of producing milk with a lower saturated fat concentration by altering dairy cow diets. Human intervention studies have shown that CVD risk can be reduced by consuming dairy products with reduced SFA and increased cis-monounsaturated fatty acid (MUFA) concentrations. This milk fatty acid profile can be achieved by supplementing dairy cow diets with cis-MUFA-rich unsaturated oils. However, rumen exposure of unsaturated oils also leads to enhanced milk trans fatty acid (TFA) concentrations. Because of concerns about the effects of TFA consumption on CVD, feeding strategies that increase MUFA concentrations in milk without concomitant increases in TFA concentration are preferred by milk processors. In an attempt to limit TFA production and increase the replacement of SFA by cis-MUFA, a preparation of rumen-protected unsaturated oils was developed using saponification with calcium salts. Four multiparous Holstein-Friesian cows in mid-late lactation were used in a 4 × 4 Latin square design with 21-d periods to investigate the effect of incremental dietary inclusion of a calcium salt of cis-MUFA product (Ca-MUFA; 20, 40, and 60 g/kg of dry matter of a maize silage-based diet), on milk production, composition, and fatty acid concentration. Increasing Ca-MUFA inclusion reduced dry matter intake linearly, but no change was observed in estimated ME intake. No change in milk yield was noted, but milk fat and protein concentrations were linearly reduced. Supplementation with Ca-MUFA resulted in a linear reduction in total SFA (from 71 to 52 g/100 g of fatty acids for control and 60 g/kg of dry matter diets, respectively). In addition, concentrations of both cis- and trans-MUFA were increased with Ca-MUFA inclusion, and increases in other biohydrogenation intermediates in milk fat were also observed. The Ca-MUFA supplement was very effective at reducing milk SFA concentration and increasing cis-MUFA concentrations without incurring any negative effects on milk and milk component yields. However, reduced milk fat and protein concentrations, together with increases in milk TFA concentrations, suggest partial dissociation of the calcium salts in the rumen
Resumo:
In dairy cows, an increase in plasma concentration of glucose-dependent insulinotropic polypeptide (GIP) is associated with an increase in metabolizable energy intake, but the role of GIP in energy partitioning of dairy cattle is not certain. The objective of this study was to examine the relationship between plasma GIP concentrations and energy partitioning toward milk production. Four mid-lactation, primiparous, rumenfistulated Holstein-Friesian cows were fed a control diet of 55% forage and 45% concentrate [dry matter (DM) basis] in a 4 × 4 Latin square design with 4-wk periods. The 4 treatments were (1) control diet fed at 1000 and 1600 h, and (2) once-daily (1000 h) feeding, (3) twice daily (1000 and 1600 h) feeding, and (4) 4 times/d (1000, 1600, 2200 and 0400 h) feeding of the control diet plus 1 dose (1.75 kg on a DM basis at 0955 h) into the rumen of supplemental vegetable proteins (Amino Green; SCA NuTec Ltd., Thirsk, UK). Measurements of respiratory exchange and energy balance were obtained over 4 d during the last week of each period while cows were housed in open-circuit respiration chambers. Blood was collected from the jugular vein every 30 min for 12 h, using indwelling catheters, starting at 0800 h on d 20 of each period. Plasma GIP concentration was measured in samples pooled over each 5 consecutive blood samplings. The relationships between plasma GIP, DM intake, heat production, respiratory quotient, milk yield, and milk energy output were analyzed using linear correlation procedures, with metabolizable intake as a partial variant. Plasma GIP concentration was not correlated with heat production, or milk yield, but was positively correlated with milk energy yield (correlation coefficient = 0.67) and negatively correlated with RQ (correlation coefficient = −0.72). The correlations between GIP and RQ and milk energy output do not imply causality, but suggest that a role for GIP may exist in the regulation of energy metabolism in dairy cows.
Resumo:
In vitro studies found that inclusion of dried stinging nettle (Urtica dioica) at 100 mg/g dry matter (DM) increased the pH of a rumen fluid inoculated fermentation buffer by 30% and the effect was persistent for 7 days. Our objective was to evaluate the effects of adding stinging nettle haylage to a total mixed ration on feed intake, eating and rumination activity, rumen pH, milk yield, and milk composition of lactating dairy cows. Six lactating Holstein-Friesian cows were used in a replicated 3 × 3 Latin Square design experiment with 3 treatments and 3 week periods. Treatments were a control (C) high-starch (311 g/kg DM) total mixed ration diet and two treatment diets containing 50 (N5) and 100 (N10) g nettle haylage (DM/kg) as a replacement for ryegrass silage (Lolium perenne). There was an increase (linear, P < 0.010) in the proportion of large particles and a reduction in medium (linear, P = 0.045) and fine particles (linear, P = 0.026) in the diet offered with increasing nettle inclusion. A numerical decrease (linear, P = 0.106) in DM intake (DMI) was observed as nettle inclusion in the diet increased. Milk yield averaged 20.3 kg/day and was not affected by diet. There was a decrease (quadratic, P = 0.01) in the time animals spent ruminating as nettle inclusion in the diet increased, in spite of an increase in the number of boli produced daily for the N5 diet (quadratic, P = 0.031). Animals fed the N10 diet spent less time with a rumen pH below 5.5 (P < 0.05) than cows fed the N5 diet. Averaged over an 8.5 h sampling period, there were no changes in the concentration or proportions of acetate or propionate in the rumen, but feeding nettle haylage reduced the concentrations of n-butyrate (quadratic, P < 0.001), i-butyrate (linear, P < 0.009) and n-caproate (linear, P < 0.003). Milk and fat and protein corrected milk yield were not affected when nettles replaced ryegrass silage in the diet of lactating dairy cows, despite a numerical reduction in feed intake. Rumination activity was reduced by the addition of nettle haylage to the diet, which may reflect differences in fibre structure between the nettle haylage and ryegrass silage fed. Changes observed in rumen pH suggest potential benefits of feeding nettle haylage for reducing rumen acidosis. However, the extent to which these effects were due to the fermentability and structure of the nettle haylage compared to the ryegrass silage fed, or a bioactive component of the nettles, is not certain
Resumo:
The objective was to measure effects of 3-nitrooxypropanol (3NP) on methane production of lactating dairy cows and any associated changes in digestion and energy and nitrogen metabolism. Six Holstein-Friesian dairy cows in mid-lactation were fed twice daily a total mixed ration with maize silage as the primary forage source. Cows received 1 of 3 treatments using an experimental design based on two 3 × 3 Latin squares with 5-wk periods. Treatments were a control placebo or 500 or 2,500 mg/d of 3NP delivered directly into the rumen, via the rumen fistula, in equal doses before each feeding. Measurements of methane production and energy and nitrogen balance were obtained during wk 5 of each period using respiration calorimeters and digestion trials. Measurements of rumen pH (48 h) and postprandial volatile fatty acid and ammonia concentrations were made at the end of wk 4. Daily methane production was reduced by 3NP, but the effects were not dose dependent (reductions of 6.6 and 9.8% for 500 and 2,500 mg/d, respectively). Dosing 3NP had a transitory inhibitory effect on methane production, which may have been due to the product leaving the rumen in liquid outflow or through absorption or metabolism. Changes in rumen concentrations of volatile fatty acids indicated that the pattern of rumen fermentation was affected by both doses of the product, with a decrease in acetate:propionate ratio observed, but that acetate production was inhibited by the higher dose. Dry matter, organic matter, acid detergent fiber, N, and energy digestibility were reduced at the higher dose of the product. The decrease in digestible energy supply was not completely countered by the decrease in methane excretion such that metabolizable energy supply, metabolizable energy concentration of the diet, and net energy balance (milk plus tissue energy) were reduced by the highest dose of 3NP. Similarly, the decrease in nitrogen digestibility at the higher dose of the product was associated with a decrease in body nitrogen balance that was not observed for the lower dose. Milk yield and milk fat concentration and fatty acid composition were not affected but milk protein concentration was greater for the higher dose of 3NP. Twice-daily rumen dosing of 3NP reduced methane production by lactating dairy cows, but the dose of 2,500 mg/d reduced rumen acetate concentration, diet digestibility, and energy supply. Further research is warranted to determine the optimal dose and delivery method of the product. Key words: 3-nitrooxypropanol, methane, digestion, rumen, dairy cow
Resumo:
The aim of this study was to investigate the effects of numerous milk compositional factors on milk coagulation properties using Partial Least Squares (PLS). Milk from herds of Jersey and Holstein-Friesian cattle was collected across the year and blended (n=55), to maximize variation in composition and coagulation. The milk was analysed for casein, protein, fat, titratable acidity, lactose, Ca2+, urea content, micelles size, fat globule size, somatic cell count and pH. Milk coagulation properties were defined as coagulation time, curd firmness and curd firmness rate measured by a controlled strain rheometer. The models derived from PLS had higher predictive power than previous models demonstrating the value of measuring more milk components. In addition to the well-established relationships with casein and protein levels, CMS and fat globule size were found to have as strong impact on all of the three models. The study also found a positive impact of fat on milk coagulation properties and a strong relationship between lactose and curd firmness, and urea and curd firmness rate, all of which warrant further investigation due to current lack of knowledge of the underlying mechanism. These findings demonstrate the importance of using a wider range of milk compositional variable for the prediction of the milk coagulation properties, and hence as indicators of milk suitability for cheese making.
Resumo:
The Green Feed (GF) system (C-Lock Inc., Rapid City, USA) is used to estimate total daily methane emissions of individual cattle using short-term measurements obtained over several days. Our objective was to compare measurements of methane emission by growing cattle obtained using the GF system with measurements using respiration chambers (RC)or sulphur hexafluoride tracer (SF6). It was hypothesised that estimates of methane emission for individual animals and treatments would be similar for GF compared to RC or SF6 techniques. In experiment 1, maize or grass silage-based diets were fed to four growing Holstein heifers, whilst for experiment 2, four different heifers were fed four haylage treatments. Both experiments were a 4 × 4 Latin square design with 33 day periods. Green Feed measurements of methane emission were obtained over 7 days (days 22–28) and com-pared to subsequent RC measurements over 4 days (days 29–33). For experiment 3, 12growing heifers rotationally grazed three swards for 26 days, with simultaneous GF and SF6 measurements over two 4 day measurement periods (days 15–19 and days 22–26).Overall methane emissions (g/day and g/kg dry matter intake [DMI]) measured using GF in experiments 1 (198 and 26.6, respectively) and 2 (208 and 27.8, respectively) were similar to averages obtained using RC (218 and 28.3, respectively for experiment 1; and 209 and 27.7, respectively, for experiment 2); but there was poor concordance between the two methods (0.1043 for experiments 1 and 2 combined). Overall, methane emissions measured using SF6 were higher (P<0.001) than GF during grazing (186 vs. 164 g/day), but there was significant (P<0.01) concordance between the two methods (0.6017). There were fewer methane measurements by GF under grazing conditions in experiment 3 (1.60/day) com-pared to indoor measurements in experiments 1 (2.11/day) and 2 (2.34/day). Significant treatment effects on methane emission measured using RC and SF6 were not evident for GF measurements, and the ranking for treatments and individual animals differed using the GF system. We conclude that under our conditions of use the GF system was unable to detectsignificant treatment and individual animal differences in methane emissions that were identified using both RC and SF6techniques, in part due to limited numbers and timing ofmeasurements obtained. Our data suggest that successful use of the GF system is reliant on the number and timing of measurements obtained relative to diurnal patterns of methane emission.
Resumo:
Replacing dietary grass silage (GS) with maize silage (MS) and dietary fat supplements may reduce milk concentration of specific saturated fatty acids (SFA) and can reduce methane production by dairy cows. The present study investigated the effect of feeding an extruded linseed supplement on milk fatty acid (FA) composition and methane production of lactating dairy cows, and whether basal forage type, in diets formulated for similar neutral detergent fiber and starch, altered the response to the extruded linseed supplement. Four mid-lactation Holstein-Friesian cows were fed diets as total mixed rations, containing either high proportions of MS or GS, both with or without extruded linseed supplement, in a 4 × 4 Latin square design experiment with 28-d periods. Diets contained 500 g of forage/kg of dry matter (DM) containing MS and GS in proportions (DM basis) of either 75:25 or 25:75 for high MS or high GS diets, respectively. Extruded linseed supplement (275 g/kg ether extract, DM basis) was included in treatment diets at 50 g/kg of DM. Milk yields, DM intake, milk composition, and methane production were measured at the end of each experimental period when cows were housed in respiration chambers. Whereas DM intake was higher for the MS-based diet, forage type and extruded linseed had no significant effect on milk yield, milk fat, protein, or lactose concentration, methane production, or methane per kilogram of DM intake or milk yield. Total milk fat SFA concentrations were lower with MS compared with GS-based diets (65.4 vs. 68.4 g/100 g of FA, respectively) and with extruded linseed compared with no extruded linseed (65.2 vs. 68.6 g/100 g of FA, respectively), and these effects were additive. Concentrations of total trans FA were higher with MS compared with GS-based diets (7.0 vs. 5.4 g/100 g of FA, respectively) and when extruded linseed was fed (6.8 vs. 5.6 g/100 g of FA, respectively). Total n-3 FA were higher when extruded linseed was fed compared with no extruded linseed (1.2 vs. 0.8 g/100 g of FA, respectively), whereas total n-6 polyunsaturated FA were higher when feeding MS compared with GS (2.5 vs. 2.1 g/100 g of FA, respectively). Feeding extruded linseed and MS both provided potentially beneficial decreases in SFA concentration of milk, and no significant interactions were found between extruded linseed supplementation and forage type. However, both MS and extruded linseed increased trans FA concentration in milk fat. Neither MS nor extruded linseed had significant effects on methane production or yield, but the amounts of supplemental lipid provided by extruded linseed were relatively small.
Jersey milk suitability for Cheddar cheese production: process, yield, quality and financial impacts
Resumo:
The aim of this study was to first evaluate the benefits of including Jersey milk into Holstein-Friesian milk on the Cheddar cheese making process and secondly, using the data gathered, identify the effects and relative importance of a wide range of milk components on milk coagulation properties and the cheese making process. Blending Jersey and Holstein-Friesian milk led to quadratic trends on the size of casein micelle and fat globule and on coagulation properties. However this was not found to affect the cheese making process. Including Jersey milk was found, on a pilot scale, to increase cheese yield (up to + 35 %) but it did not affect cheese quality, which was defined as compliance with the legal requirements of cheese composition, cheese texture, colour and grading scores. Profitability increased linearly with the inclusion of Jersey milk (up to 11.18 p£ L-1 of milk). The commercial trials supported the pilot plant findings, demonstrating that including Jersey milk increased cheese yield without having a negative impact on cheese quality, despite the inherent challenges of scaling up such a process commercially. The successful use of a large array of milk components to model the cheese making process challenged the commonly accepted view that fat, protein and casein content and protein to fat ratio are the main contributors to the cheese making process as other components such as the size of casein micelle and fat globule were found to also play a key role with small casein micelle and large fat globule reducing coagulation time, improving curd firmness, fat recovery and influencing cheese moisture and fat content. The findings of this thesis indicated that milk suitability for Cheddar making could be improved by the inclusion of Jersey milk and that more compositional factors need to be taken into account when judging milk suitability.
Resumo:
Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec[AU1: Add manufacturer name and location.]; 260 g of oil/ kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.
Resumo:
Partial budgeting was used to estimate the net benefit of blending Jersey milk in Holstein-Friesian milk for Cheddar cheese production. Jersey milk increases Cheddar cheese yield. However, the cost of Jersey milk is also higher; thus, determining the balance of profitability is necessary, including consideration of seasonal effects. Input variables were based on a pilot plant experiment run from 2012 to 2013 and industry milk and cheese prices during this period. When Jersey milk was used at an increasing rate with Holstein-Friesian milk (25, 50, 75, and 100% Jersey milk), it resulted in an increase of average net profit of 3.41, 6.44, 8.57, and 11.18 pence per kilogram of milk, respectively, and this additional profit was constant throughout the year. Sensitivity analysis showed that the most influential input on additional profit was cheese yield, whereas cheese price and milk price had a small effect. The minimum increase in yield, which was necessary for the use of Jersey milk to be profitable, was 2.63, 7.28, 9.95, and 12.37% at 25, 50, 75, and 100% Jersey milk, respectively. Including Jersey milk did not affect the quantity of whey butter and powder produced. Althoug further research is needed to ascertain the amount of additional profit that would be found on a commercial scale, the results indicate that using Jersey milk for Cheddar cheese making would lead to an improvement in profit for the cheese makers, especially at higher inclusion rates.