80 resultados para Scale development
Resumo:
There have been limited recent advances in understanding of what influences uptake of innovations despite the current international focus on smallholder agriculture as a means of achieving food security and rural development. This paper provides a rigorous study of factors influencing adoption by smallholders in central Mexico and builds on findings to identify a broad approach to significantly improve research on and understanding of factors influencing adoption by smallholders in developing countries. Small-scale dairy systems play an important role in providing income, employment and nutrition in the highlands of central Mexico. A wide variety of practices and technologies have been promoted by the government public services to increase milk production and economic efficiency, but there have been very low levels of uptake of most innovations, with the exception of improving grassland through introduction of grass varieties together with management practices. A detailed study was conducted with 80 farmers who are already engaged with the use of this innovation to better understand the process of adoption and identify socioeconomic and farm variables, cognitive (beliefs), and social–psychological (social norms) factors associated with farmers' use of improved grassland. The Theory of Reasoned Action (TRA) was used as a theoretical framework and Spearman Rank Order correlation was conducted to analyse the data. Most farmers (92.5%) revealed strong intention to continue to use improved grassland (which requires active management and investment of resources) for the next 12 months; whereas 7.5% of farmers were undecided and showed weak intention, which was associated with farmers whose main income was from non-farm activities as well as with farmers who had only recently started using improved grassland. Despite farmers' experience of using improved grassland (mean of 18 years) farmers' intentions to continue to adopt it was influenced almost as much by salient referents (mainly male relatives) as by their own attitudes. The hitherto unnoticed longevity of the role social referents play in adoption decisions is an important finding and has implications for further research and for the design of extension approaches. The study demonstrates the value and importance of using TRA or TPB approaches to understand social cognitive (beliefs) and social–psychological (social norms) factors in the study of adoption. However, other factors influencing adoption processes need to be included to provide fuller understanding. An approach that would enable this, and the development of more generalisable findings than from location specific case studies, and contribute to broader conceptualisation, is proposed.
Resumo:
We compare the characteristics of synthetic European droughts generated by the HiGEM1 coupled climate model run with present day atmospheric composition with observed drought events extracted from the CRU TS3 data set. The results demonstrate consistency in both the rate of drought occurrence and the spatiotemporal structure of the events. Estimates of the probability density functions for event area, duration and severity are shown to be similar with confidence > 90%. Encouragingly, HiGEM is shown to replicate the extreme tails of the observed distributions and thus the most damaging European drought events. The soil moisture state is shown to play an important role in drought development. Once a large-scale drought has been initiated it is found to be 50% more likely to continue if the local soil moisture is below the 40th percentile. In response to increased concentrations of atmospheric CO2, the modelled droughts are found to increase in duration, area and severity. The drought response can be largely attributed to temperature driven changes in relative humidity. 1 HiGEM is based on the latest climate configuration of the Met Office Hadley Centre Unified Model (HadGEM1) with the horizontal resolution increased to 1.25 x 0.83 degrees in longitude and latitude in the atmosphere and 1/3 x 1/3 degrees in the ocean.
Resumo:
Whilst hydrological systems can show resilience to short-term streamflow deficiencies during within-year droughts, prolonged deficits during multi-year droughts are a significant threat to water resources security in Europe. This study uses a threshold-based objective classification of regional hydrological drought to qualitatively examine the characteristics, spatio-temporal evolution and synoptic climatic drivers of multi-year drought events in 1962–64, 1975–76 and 1995–97, on a European scale but with particular focus on the UK. Whilst all three events are multi-year, pan-European phenomena, their development and causes can be contrasted. The critical factor in explaining the unprecedented severity of the 1975–76 event is the consecutive occurrence of winter and summer drought. In contrast, 1962–64 was a succession of dry winters, mitigated by quiescent summers, whilst 1995–97 lacked spatial coherence and was interrupted by wet interludes. Synoptic climatic conditions vary within and between multi-year droughts, suggesting that regional factors modulate the climate signal in streamflow drought occurrence. Despite being underpinned by qualitatively similar climatic conditions and commonalities in evolution and characteristics, each of the three droughts has a unique spatio-temporal signature. An improved understanding of the spatio-temporal evolution and characteristics of multi-year droughts has much to contribute to monitoring and forecasting capability, and to improved mitigation strategies.
Resumo:
Droughts tend to evolve slowly and affect large areas simultaneously, which suggests that improved understanding of spatial coherence of drought would enable better mitigation of drought impacts through enhanced monitoring and forecasting strategies. This study employs an up-to-date dataset of over 500 river flow time series from 11 European countries, along with a gridded precipitation dataset, to examine the spatial coherence of drought in Europe using regional indicators of precipitation and streamflow deficit. The drought indicators were generated for 24 homogeneous regions and, for selected regions, historical drought characteristics were corroborated with previous work. The spatial coherence of drought characteristics was then examined at a European scale. Historical droughts generally have distinctive signatures in their spatio-temporal development, so there was limited scope for using the evolution of historical events to inform forecasting. Rather, relationships were explored in time series of drought indicators between regions. Correlations were generally low, but multivariate analyses revealed broad continental-scale patterns, which appear to be related to large-scale atmospheric circulation indices (in particular, the North Atlantic Oscillation and the East Atlantic West Russia pattern). A novel methodology for forecasting was developed (and demonstrated with reference to the United Kingdom), which predicts drought from drought i.e. uses spatial coherence of drought to facilitate early warning of drought in a target region, from drought which is developing elsewhere in Europe.Whilst the skill of the methodology is relatively modest at present, this approach presents a potential new avenue for forecasting, which offers significant advantages in that it allows prediction for all seasons, and also shows some potential for forecasting the termination of drought conditions.
Resumo:
The development of NWP models with grid spacing down to 1 km should produce more realistic forecasts of convective storms. However, greater realism does not necessarily mean more accurate precipitation forecasts. The rapid growth of errors on small scales in conjunction with preexisting errors on larger scales may limit the usefulness of such models. The purpose of this paper is to examine whether improved model resolution alone is able to produce more skillful precipitation forecasts on useful scales, and how the skill varies with spatial scale. A verification method will be described in which skill is determined from a comparison of rainfall forecasts with radar using fractional coverage over different sized areas. The Met Office Unified Model was run with grid spacings of 12, 4, and 1 km for 10 days in which convection occurred during the summers of 2003 and 2004. All forecasts were run from 12-km initial states for a clean comparison. The results show that the 1-km model was the most skillful over all but the smallest scales (approximately <10–15 km). A measure of acceptable skill was defined; this was attained by the 1-km model at scales around 40–70 km, some 10–20 km less than that of the 12-km model. The biggest improvement occurred for heavier, more localized rain, despite it being more difficult to predict. The 4-km model did not improve much on the 12-km model because of the difficulties of representing convection at that resolution, which was accentuated by the spinup from 12-km fields.
Resumo:
The United Kingdom’s pharmacy regulator contemplated using continuing professional development (CPD) in pharmacy revalidation in 2009, simultaneously asking pharmacy professionals to demonstrate the value of their CPD by showing its relevance and impact. The idea of linking new CPD requirements with revalidation was yet to be explored. Our aim was to develop and validate a framework to guide pharmacy professionals to select CPD activities that are relevant to their work and to produce a score sheet that would make it possible to quantify the impact and relevance of CPD. METHODS: We adapted an existing risk matrix, producing a CPD framework consisting of relevance and impact matrices. Concepts underpinning the framework were refined through feedback from five pharmacist teacher-practitioners. We then asked seven pharmacists to rate the relevance of the framework’s individual elements on a 4-point scale to determine content validity. We explored views about the framework through focus groups with six and interviews with 17 participants who had used it formally in a study. RESULTS: The framework’s content validity index was 0.91. Feedback about the framework related to three themes of penetrability of the framework, usefulness to completion of CPD, and advancement of CPD records for the purpose of revalidation. DISCUSSION: The framework can help professionals better select CPD activities prospectively, and makes assessment of CPD more objective by allowing quantification, which could be helpful for revalidation. We believe the framework could potentially help other health professionals with better management of their CPD irrespective of their field of practice.
Resumo:
The development of effective environmental management plans and policies requires a sound understanding of the driving forces involved in shaping and altering the structure and function of ecosystems. However, driving forces, especially anthropogenic ones, are defined and operate at multiple administrative levels, which do not always match ecological scales. This paper presents an innovative methodology of analysing drivers of change by developing a typology of scale sensitivity of drivers that classifies and describes the way they operate across multiple administrative levels. Scale sensitivity varies considerably among drivers, which can be classified into five broad categories depending on the response of ‘evenness’ and ‘intensity change’ when moving across administrative levels. Indirect drivers tend to show low scale sensitivity, whereas direct drivers show high scale sensitivity, as they operate in a non-linear way across the administrative scale. Thus policies addressing direct drivers of change, in particular, need to take scale into consideration during their formulation. Moreover, such policies must have a strong spatial focus, which can be achieved either by encouraging local–regional policy making or by introducing high flexibility in (inter)national policies to accommodate increased differentiation at lower administrative levels. High quality data is available for several drivers, however, the availability of consistent data at all levels for non-anthropogenic drivers is a major constraint to mapping and assessing their scale sensitivity. This lack of data may hinder effective policy making for environmental management, since it restricts the ability to fully account for scale sensitivity of natural drivers in policy design.
Resumo:
Organizations introduce acceptable use policies to deter employee computer misuse. Despite the controlling, monitoring and other forms of interventions employed, some employees misuse the organizational computers to carry out their personal work such as sending emails, surfing internet, chatting, playing games etc. These activities not only waste productive time of employees but also bring a risk to the organization. A questionnaire was administrated to a random sample of employees selected from large and medium scale software development organizations, which measured the work computer misuse levels and the factors that influence such behavior. The presence of guidelines provided no evidence of significant effect on the level of employee computer misuse. Not having access to Internet /email away from work and organizational settings were identified to be the most significant influences of work computer misuse.
Resumo:
In January 2008, central and southern China experienced persistent low temperatures, freezing rain, and snow. The large-scale conditions associated with the occurrence and development of these snowstorms are examined in order to identify the key synoptic controls leading to this event. Three main factors are identified: 1) the persistent blocking high over Siberia, which remained quasi-stationary around 65°E for 3 weeks, led to advection of dry and cold Siberian air down to central and southern China; 2) a strong persistent southwesterly flow associated with the western Pacific subtropical high led to enhanced moisture advection from the Bay of Bengal into central and southern China; and 3) the deep inversion layer in the lower troposphere associated with the extended snow cover over most of central and southern China. The combination of these three factors is likely responsible for the unusual severity of the event, and hence a long return period
Resumo:
Background: Parental overprotection has commonly been implicated in the development and maintenance of childhood anxiety disorders. Overprotection has been assessed using questionnaire and observational methods interchangeably; however, the extent to which these methods access the same construct has received little attention. Edwards, 2008 and Edwards et al., 2010 developed a promising parent-report measure of overprotection (OP) and reported that, with parents of pre-school children, the measure correlated with observational assessments and predicted changes in child anxiety symptoms. We aimed to validate the use of the OP measure with mothers of children in middle childhood, and examine its association with child and parental anxiety. Methods: Mothers of 90 children (60 clinically anxious, 30 non-anxious) aged 7–12 years completed the measure and engaged in a series of mildly stressful tasks with their child. Results: The internal reliability of the measure was good and scores correlated significantly with observations of maternal overprotection in a challenging puzzle task. Contrary to expectations, OP was not significantly associated with child anxiety status or symptoms, but was significantly associated with maternal anxiety symptoms. Limitations: Participants were predominantly from affluent social groups and of non-minority status. Overprotection is a broad construct, the use of specific sub-dimensions of behavioural constructs may be preferable. Conclusions: The findings support the use of the OP measure to assess parental overprotection among 7–12 year-old children; however, they suggest that parental responses may be more closely related to the degree of parental rather than child anxiety.
Resumo:
The development of effective environmental management plans and policies requires a sound understanding of the driving forces involved in shaping and altering the structure and function of ecosystems. However, driving forces, especially anthropogenic ones, are defined and operate at multiple administrative levels, which do not always match ecological scales. This paper presents an innovative methodology of analysing drivers of change by developing a typology of scale sensitivity of drivers that classifies and describes the way they operate across multiple administrative levels. Scale sensitivity varies considerably among drivers, which can be classified into five broad categories depending on the response of ‘evenness’ and ‘intensity change’ when moving across administrative levels. Indirect drivers tend to show low scale sensitivity, whereas direct drivers show high scale sensitivity, as they operate in a non-linear way across the administrative scale. Thus policies addressing direct drivers of change, in particular, need to take scale into consideration during their formulation. Moreover, such policies must have a strong spatial focus, which can be achieved either by encouraging local–regional policy making or by introducing high flexibility in (inter)national policies to accommodate increased differentiation at lower administrative levels. High quality data is available for several drivers, however, the availability of consistent data at all levels for non-anthropogenic drivers is a major constraint to mapping and assessing their scale sensitivity. This lack of data may hinder effective policy making for environmental management, since it restricts the ability to fully account for scale sensitivity of natural drivers in policy design.
Resumo:
Anthropogenic emissions of heat and exhaust gases play an important role in the atmospheric boundary layer, altering air quality, greenhouse gas concentrations and the transport of heat and moisture at various scales. This is particularly evident in urban areas where emission sources are integrated in the highly heterogeneous urban canopy layer and directly linked to human activities which exhibit significant temporal variability. It is common practice to use eddy covariance observations to estimate turbulent surface fluxes of latent heat, sensible heat and carbon dioxide, which can be attributed to a local scale source area. This study provides a method to assess the influence of micro-scale anthropogenic emissions on heat, moisture and carbon dioxide exchange in a highly urbanized environment for two sites in central London, UK. A new algorithm for the Identification of Micro-scale Anthropogenic Sources (IMAS) is presented, with two aims. Firstly, IMAS filters out the influence of micro-scale emissions and allows for the analysis of the turbulent fluxes representative of the local scale source area. Secondly, it is used to give a first order estimate of anthropogenic heat flux and carbon dioxide flux representative of the building scale. The algorithm is evaluated using directional and temporal analysis. The algorithm is then used at a second site which was not incorporated in its development. The spatial and temporal local scale patterns, as well as micro-scale fluxes, appear physically reasonable and can be incorporated in the analysis of long-term eddy covariance measurements at the sites in central London. In addition to the new IMAS-technique, further steps in quality control and quality assurance used for the flux processing are presented. The methods and results have implications for urban flux measurements in dense urbanised settings with significant sources of heat and greenhouse gases.
Resumo:
Given the decision to include small-scale sinks projects implemented by low-income communities in the clean development mechanism of the Kyoto Protocol, the paper explores some of the basic governance conditions that such carbon forestry projects will have to meet if they are to be successfully put in practice. To date there are no validated small-scale sinks projects and investors have shown little interest in financing such projects, possibly to due to the risks and uncertainties associated with sinks projects. Some suggest however, that carbon has the potential to become a serious commodity on the world market, thus governance over ownership, rights and responsibilities merit discussion. Drawing on the interdisciplinary development, as well as from the literature on livelihoods and democratic decentralization in forestry, the paper explores how to adapt forest carbon projects to the realities encountered in the local context. It also highlights the importance of capitalizing on synergies with other rural development strategies, ensuring stakeholder participation by working with accountable, representative local organizations, and creating flexible and adaptive project designs.
Resumo:
In late February 2010 the extraordinary windstorm Xynthia crossed over Southwestern and Central Europe and caused severe damage, affecting particularly the Spanish and French Atlantic coasts. The storm was embedded in uncommon large-scale atmospheric and boundary conditions prior to and during its development, namely enhanced sea surface temperatures (SST) within the low-level entrainment zone of air masses, an unusual southerly position of the polar jet stream, and a remarkable split jet structure in the upper troposphere. To analyse the processes that led to the rapid intensification of this exceptional storm originating close to the subtropics (30°N), the sensitivity of the cyclone intensification to latent heat release is determined using the regional climate model COSMO-CLM forced with ERA-Interim data. A control simulation with observed SST shows that moist and warm air masses originating from the subtropical North Atlantic were involved in the cyclogenesis process and led to the formation of a vertical tower with high values of potential vorticity (PV). Sensitivity studies with reduced SST or increased laminar boundary roughness for heat led to reduced surface latent heat fluxes. This induced both a weaker and partly retarded development of the cyclone and a weakening of the PV-tower together with reduced diabatic heating rates, particularly at lower and mid levels. We infer that diabatic processes played a crucial role during the phase of rapid deepening of Xynthia and thus to its intensity over the Southeastern North Atlantic. We suggest that windstorms like Xynthia may occur more frequently under future climate conditions due to the warming SSTs and potentially enhanced latent heat release, thus increasing the windstorm risk for Southwestern Europe.
Resumo:
To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and forecasting (WRF) model as a community tool to address urban environmental issues. The core of this WRF/urban modelling system consists of the following: (1) three methods with different degrees of freedom to parameterize urban surface processes, ranging from a simple bulk parameterization to a sophisticated multi-layer urban canopy model with an indoor–outdoor exchange sub-model that directly interacts with the atmospheric boundary layer, (2) coupling to fine-scale computational fluid dynamic Reynolds-averaged Navier–Stokes and Large-Eddy simulation models for transport and dispersion (T&D) applications, (3) procedures to incorporate high-resolution urban land use, building morphology, and anthropogenic heating data using the National Urban Database and Access Portal Tool (NUDAPT), and (4) an urbanized high-resolution land data assimilation system. This paper provides an overview of this modelling system; addresses the daunting challenges of initializing the coupled WRF/urban model and of specifying the potentially vast number of parameters required to execute the WRF/urban model; explores the model sensitivity to these urban parameters; and evaluates the ability of WRF/urban to capture urban heat islands, complex boundary-layer structures aloft, and urban plume T&D for several major metropolitan regions. Recent applications of this modelling system illustrate its promising utility, as a regional climate-modelling tool, to investigate impacts of future urbanization on regional meteorological conditions and on air quality under future climate change scenarios. Copyright © 2010 Royal Meteorological Society