58 resultados para Salivary proteins and peptides
Resumo:
The aim of the work was to study the survival of Lactobacillus plantarum NCIMB 8826 in model solutions and develop a mathematical model describing its dependence on pH, citric acid and ascorbic acid. A Central Composite Design (CCD) was developed studying each of the three factors at five levels within the following ranges, i.e., pH (3.0-4.2), citric acid (6-40 g/L), and ascorbic acid (100-1000 mg/L). In total, 17 experimental runs were carried out. The initial cell concentration in the model solutions was approximately 1 × 10(8)CFU/mL; the solutions were stored at 4°C for 6 weeks. Analysis of variance (ANOVA) of the stepwise regression demonstrated that a second order polynomial model fits well the data. The results demonstrated that high pH and citric acid concentration enhanced cell survival; one the other hand, ascorbic acid did not have an effect. Cell survival during storage was also investigated in various types of juices, including orange, grapefruit, blackcurrant, pineapple, pomegranate, cranberry and lemon juice. The model predicted well the cell survival in orange, blackcurrant and pineapple, however it failed to predict cell survival in grapefruit and pomegranate, indicating the influence of additional factors, besides pH and citric acid, on cell survival. Very good cell survival (less than 0.4 log decrease) was observed after 6 weeks of storage in orange, blackcurrant and pineapple juice, all of which had a pH of about 3.8. Cell survival in cranberry and pomegranate decreased very quickly, whereas in the case of lemon juice, the cell concentration decreased approximately 1.1 logs after 6 weeks of storage, albeit the fact that lemon juice had the lowest pH (pH~2.5) among all the juices tested. Taking into account the results from the compositional analysis of the juices and the model, it was deduced that in certain juices, other compounds seemed to protect the cells during storage; these were likely to be proteins and dietary fibre In contrast, in certain juices, such as pomegranate, cell survival was much lower than expected; this could be due to the presence of antimicrobial compounds, such as phenolic compounds.
Resumo:
Colloidal gas aphrons (CGA) have previously been defined as surfactant stabilized gas microbubbles and characterized for a number of surfactants in terms of stability, gas holdup and bubble size even though there is no conclusive evidence of their structure (that is, orientation of surfactant molecules at the gas–liquid interface, thickness of gas–liquid interface, and/or number of surfactant layers). Knowledge of the structure would enable us to use these dispersions more efficiently for their diverse applications (such as for removal of dyes, recovery of proteins, and enhancement of mass transfer in bioreactors). This study investigates dispersion and structural features of CGA utilizing a range of novel predictive (for prediction of aphron size and drainage rate) and experimental (electron microscopy and X-ray diffraction) methods. Results indicate structural differences between foams and CGA, which may have been caused by a multilayer structure of the latter as suggested by the electron and X-ray diffraction analysis.
Resumo:
There is growing evidence that a number of oral Treponema species, in particular Treponema denticola, are associated with the progression of human periodontal disease. The major sheath (or surface) protein (Msp) of T. denticola is implicated in adhesion of bacteria to host cells and tissue proteins and is likely to be an important virulence factor. However, the binding regions of the Msp are not known. We have purified from Escherichia coli recombinant Msp (rMsp) polypeptides corresponding to the following: full-length Msp (rMsp) minus 13 N-terminal amino acid (aa) residues, an amino-terminal fragment (rN-Msp, 189 aa residues), a 57-aa residue segment from the central region (rV-Msp), and a C-terminal fragment (rC-Msp, 272 aa residues). rMsp (530 aa residues) bound to immobilized fibronectin, keratin, laminin, collagen type 1, fibrinogen, hyaluronic acid, and heparin. The N- and V-region polypeptides, but not rC-Msp, also bound to these substrates. Binding of rMsp to fibronectin was targeted to the N-terminal heparin I/fibrin I domain. Antibodies to the N-region or V-region polypeptides, but not antibodies to the rC-Msp fragment, blocked adhesion of T. denticola ATCC 35405 cells to a range of host protein molecules. These results suggest that the N-terminal half of Msp carries epitopes that are surface exposed and that are involved in mediating adhesion. Binding of rMsp onto the cell surface of low-level fibronectin-binding Treponema isolates conferred a 10-fold increase in fibronectin binding. This confirms that Msp functions autonomously as an adhesin and raises the possibility that phenotypic complementation of virulence functions might occur within mixed populations of Treponema species.
Resumo:
Sustained hypoxia alters the expression of numerous proteins and predisposes individuals to Alzheimer's disease (AD). We have previously shown that hypoxia in vitro alters Ca2+ homeostasis in astrocytes and promotes increased production of amyloid beta peptides (Abeta) of AD. Indeed, alteration of Ca2+ homeostasis requires amyloid formation. Here, we show that electrogenic glutamate uptake by astrocytes is suppressed by hypoxia (1% O2, 24h) in a manner that is independent of amyloid beta peptide formation. Thus, hypoxic suppression of glutamate uptake and expression levels of glutamate transporter proteins EAAT1 and EAAT2 were not mimicked by exogenous application of amyloid beta peptide, or by prevention of endogenous amyloid peptide formation (using inhibitors of either beta or gamma secretase). Thus, dysfunction in glutamate homeostasis in hypoxic conditions is independent of Abeta production, but will likely contribute to neuronal damage and death associated with AD following hypoxic events.
Resumo:
Microbial metabolism of proteins and amino acids by human gut bacteria generates a variety of compounds including phenol, indole, and sulfur compounds and branched chain fatty acids, many of which have been shown to elicit a toxic effect on the lumen. Bacterial fermentation of amino acids and proteins occurs mainly in the distal colon, a site that is often fraught with symptoms from disorders including ulcerative colitis (UC) and colorectal cancer (CRC). In contrast to carbohydrate metabolism by the gut microbiota, proteolysis is less extensively researched. Many metabolites are low molecular weight, volatile compounds. This review will summarize the use of analytical methods to detect and identify compounds in order to elucidate the relationship between specific dietary proteinaceous substrates, their corresponding metabolites, and implications for gastrointestinal health.
Resumo:
The functional food market is growing rapidly and membrane processing offers several advantages over conventional methods for separation, fractionation and recovery of bioactive components. The aim of the present study was to select a process that could be implemented easily on an industrial scale for the isolation of natural lactose-derived oligosaccharides (OS) from caprine whey, enabling the development of functional foods for clinical and infant nutrition. The most efficient process was the combination of a pre-treatment to eliminate proteins and fat, using an ultrafiltration (UF) membrane of 25 kDa molecular weight cut off (MWCO), followed by a tighter UF membrane with 1 kDa MWCO. Circa 90% of the carbohydrates recovered in the final retentate were OS. Capillary electrophoresis was used to evaluate the OS profile in this retentate. The combined membrane-processing system is thus a promising technique for obtaining natural concentrated OS from whey. Powered
Resumo:
Sainfoin is a temperate legume that contains condensed tannins (CT), i.e. polyphenols that are able to bind proteins and thus reduce protein degradation in the rumen. A reduction in protein degradation in the rumen can lead to a subsequent increase in amino acid flow to the small intestine. The effects of CT in the rumen and the intestine differ according to the amount and structure of CT and the nature of the protein molecular structure. The objective of the present study was to investigate the degradability in the rumen of three CT-containing sainfoin varieties and CT-free lucerne in relation to CT content and structure (mean degree of polymerization, proportion of prodelphinidins and cis-flavanol units) and protein structure (amide I and II bands, ratio of amide I-to-amide II, α-helix, β-sheet, ratio of α-helix-to-β-sheet). Protein molecular structures were identified using Fourier transform/infrared-attenuated total reflectance (FT/IR-ATR) spectroscopy. The in situ degradability of three sainfoin varieties (Ambra, Esparcette and Villahoz) was studied in 2008, during the first growth cycle at two harvest dates (P1 and P2, i.e. 5 May and 2 June, respectively) and at one date (P3) during the second growth cycle (2 June) and these were compared with a tannin-free legume, lucerne (Aubigny). Loss of dry matter (DMDeg) and nitrogen (NDeg) in polyester bags suspended in the rumen was measured using rumen-fistulated cows. The NDeg of lucerne compared with sainfoin was 0·80 v. 0·77 at P1, 0·78 v. 0·65 at P2 and 0·79 v. 0·70 at P3, respectively. NDeg was related to the rapidly disappearing fraction (‘a’) fraction (r=0·76), the rate of degradation (‘c’) (r=0·92), to the content (r=−0·81) and structure of CT. However, the relationship between NDeg and the slowly disappearing fraction (‘b’) was weak. There was a significant effect of date and species×date, for NDeg and ‘a’ fraction. The secondary protein structure varied with harvest date (species×date) and was correlated with the fraction ‘b’. Both tannin and protein structures influenced the NDeg degradation. CT content and structure were correlated to the ‘a’ fraction and to the ‘c’. Features of the protein molecular secondary structure were correlated to the ‘b’ fraction.
Resumo:
The increasing use of patterned neural networks in multielectrode arrays and similar devices drives the constant development and evaluation of new biomaterials. Recently, we presented a promising technique to guide neurons and glia reliably and effectively. Parylene-C, a common hydrophobic polymer, was photolithographically patterned on silicon oxide (SiO2) and subsequently activated via immersion in serum. In this article, we explore the effects of ultraviolet (UV)-induced oxidation on parylene's ability to pattern neurons and glia. We exposed parylene-C stripe patterns to increasing levels of UV radiation and found a dose-dependent reduction in the total mass of patterned cells, as well as a gradual loss of glial and neuronal conformity to the patterns. In contrast, nonirradiated patterns had superior patterning results and increased presence of cells. The reduced cell adhesion and patterning after the formation of aldehyde and carboxyl groups on UV-radiated parylene-C supports our hypothesis that cell adhesion and growth on parylene is facilitated by hydrophobic adsorption of serum proteins. We conclude that unlike other cell patterning schemes, our technique does not rely on photooxidation of the polymer. Nonetheless, the precise control of oxygenated groups on parylene could pave the way for the differential binding of proteins and other molecules on the surface, aiding in the adhesion of alternative cell types. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010
Resumo:
Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS) is a highly versatile and sensitive analytical technique, which is known for its soft ionisation of biomolecules such as peptides and proteins. Generally, MALDI MS analysis requires little sample preparation, and in some cases like MS profiling it can be automated through the use of robotic liquid-handling systems. For more than a decade now, MALDI MS has been extensively utilised in the search for biomarkers that could aid clinicians in diagnosis, prognosis, and treatment decision making. This review examines the various MALDI-based MS techniques like MS imaging, MS profiling and proteomics in-depth analysis where MALDI MS follows fractionation and separation methods such as gel electrophoresis, and how these have contributed to prostate cancer biomarker research. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Resumo:
Purification of intact enveloped virus particles can be useful as a first step in understanding the structure and function of both viral and host proteins that are incorporated into the virion. Purified preparations of virions can be used to address these questions using techniques such as mass spectrometry proteomics. Recent studies on the proteome of coronavirus virions have shown that in addition to the structural proteins, accessory and non-structural virus proteins and a wide variety of host cell proteins associate with virus particles. To further study the presence of virion proteins, high quality sample preparation is crucial to ensure reproducible analysis by the wide variety of methods available for proteomic analysis.
Resumo:
The actin nodule is a novel F-actin structure present in platelets during early spreading. However, only limited detail is known regarding nodule organization and function. Here we use electron microscopy, SIM and dSTORM super-resolution, and live-cell TIRF microscopy to characterize the structural organization and signalling pathways associated with nodule formation. Nodules are composed of up to four actin-rich structures linked together by actin bundles. They are enriched in the adhesion-related proteins talin and vinculin, have a central core of tyrosine phosphorylated proteins and are depleted of integrins at the plasma membrane. Nodule formation is dependent on Wiskott-Aldrich syndrome protein (WASp) and the ARP2/3 complex. WASp(-/-) mouse blood displays impaired platelet aggregate formation at arteriolar shear rates. We propose actin nodules are platelet podosome-related structures required for platelet-platelet interaction and their absence contributes to the bleeding diathesis of Wiskott-Aldrich syndrome.
Resumo:
The components of many signaling pathways have been identified and there is now a need to conduct quantitative data-rich temporal experiments for systems biology and modeling approaches to better understand pathway dynamics and regulation. Here we present a modified Western blotting method that allows the rapid and reproducible quantification and analysis of hundreds of data points per day on proteins and their phosphorylation state at individual sites. The approach is of particular use where samples show a high degree of sample-to-sample variability such as primary cells from multiple donors. We present a case study on the analysis of >800 phosphorylation data points from three phosphorylation sites in three signaling proteins over multiple time points from platelets isolated from ten donors, demonstrating the technique's potential to determine kinetic and regulatory information from limited cell numbers and to investigate signaling variation within a population. We envisage the approach being of use in the analysis of many cellular processes such as signaling pathway dynamics to identify regulatory feedback loops and the investigation of potential drug/inhibitor responses, using primary cells and tissues, to generate information about how a cell's physiological state changes over time.
Resumo:
The interaction between tryptophan-rich puroindoline proteins and model bacterial membranes at the air-liquid interface has been investigated by FTIR spectroscopy, surface pressure measurements and Brewster angle microscopy. The role of different lipid constituents on the interactions between lipid membrane and protein was studied using wild type (Pin-b) and mutant (Trp44 to Arg44 mutant, Pin-bs) puroindoline proteins. The results show differences in the lipid selectivity of the two proteins in terms of preferential binding to specific lipid head groups in mixed lipid systems. Pin-b wild type was able to penetrate mixed layers of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) head groups more deeply compared to the mutant Pin-bs. Increasing saturation of the lipid tails increased penetration and adsorption of Pin-b wild type, but again the response of the mutant form differed. The results provide insight as to the role of membrane architecture, lipid composition and fluidity, on antimicrobial activity of proteins. Data show distinct differences in the lipid binding behavior of Pin-b as a result of a single residue mutation, highlighting the importance of hydrophobic and charged amino acids in antimicrobial protein and peptide activity.