94 resultados para SOLUBLE RECEPTORS
Resumo:
There is increasing evidence that G protein-coupled receptors form oligomers and that this might be important for their function. We have studied this phenomenon for the D-2 dopamine receptor and have shown-using a variety of biochemical and biophysical techniques-that this receptor forms dimers or higher-order oligomers. Using ligand-binding studies, we have also found evidence that this oligomer formation has functional relevance. Thus, for the receptor expressed in either CHO cells or Sf 9 insect cells, the binding properties of several radioligands (in saturation, competition, and dissociation assays) do not conform to those expected for a monomeric receptor with a single binding site. We propose that the receptors exist in oligomers with homotropic and heterotropic negatively cooperative interactions between ligands
Resumo:
Recently, the cannabinoid receptors CB1 and CB2 were shown to modulate bone formation and resorption in vivo, although little is known of the mechanisms underlying this. The effects of cannabinoids on mesenchymal stem cell (MSC) recruitment in whole bone marrow were investigated using either the fibroblastic colony-forming unit (CFU-f) assay or high-density cultures of whole bone marrow. Levels of the CB1 and CB2 receptors were assessed by flow cytometry. Treatment of CFU-f cultures with the endocannabinoid 2-arachidonylglycerol (2-AG) dose-dependently increased fibroblastic and differentiated colony formation along with colony size. The nonspecific agonists CP 55,940 and WIN 55,212 both increased colony numbers, as did the CB2 agonists BML190 and JWH015. The CB1-specific agonist ACEA had no effect, whereas the CB2 antagonist AM630 blocked the effect of the natural cannabinoid tetrahydrocannabivarin, confirming mediation via the CB2 receptor. Treatment of primary bone marrow cultures with 2-AG stimulated proliferation and collagen accumulation, whereas treatment of subcultures of MSC had no effect, suggesting that the target cell is not the MSC but an accessory cell present in bone marrow. Subcultures of MSCs were negative for CB1 and CB2 receptors as shown by flow cytometry, whereas whole bone marrow contained a small population of cells positive for both receptors. These data suggest that cannabinoids may stimulate the recruitment of MSCs from the bone marrow indirectly via an accessory cell and mediated via the CB2 receptor. This recruitment may be one mechanism responsible for the increased bone formation seen after cannabinoid treatment in vivo.
Resumo:
1 Mechanisms of inverse agonist action at the D-2(short) dopamine receptor have been examined. 2 Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [H-3]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. 3 Competition of inverse agonists versus [H-3] NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. K-i values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. K-coupled and K-uncoupled were statistically different for the set of compounds tested ( ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. 4 These observations were supported by simulations of these competition experiments according to the extended ternary complex model. 5 Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [S-35]GTPγ S binding to varying degrees in concentration-response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (-)-sulpiride was unaffected. 6 These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism.
Resumo:
Water-soluble cationic copolymers and hydrogels were synthesized by radical copolymerization of [2-(methacryloyloxy)ethyl]trimetilylammonium chloride (MADQUAT) and 2-hydroxyethylacrylate (HEA). The kinetics of copolymerization has been studied and the reactivity ratios were determined. It was found that MADQUAT exhibits higher reactivity in copolymerization. The complexation between linear MADQUAT-HEA and linear poly(acrylic acid) (PAA) has been studied in aqueous solutions at different pH. It results in the formation of insoluble polyelectrolyte complexes, whose composition and stability to aggregate depends on MADQUAT content in copolymers and pH. The hydrogels were synthesized by three-dimensional radical copolymerization of MADQUAT and HEA in the presence of a crosslinker. The effects of the feed mixture composition on yield and swelling properties of the hydrogels were studied. The interactions of these hydrogels with linear PAA result in formation of gel-polyelectrolyte complexes and contraction of the samples. It was found that the contraction depends on copolymer composition, PAA molecular weight, and solution pH. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Amphiphilic copolymers have been synthesised by free radical copolymerisation of 2-hydroxyethyl acrylate with butyl acrylate, the reactivity ratios of which indicate practically equal reactivity. The copolymers containing less than 30 mol-% of BA were soluble in water and exhibited a LCST in aqueous solutions. It was found that the interaction between these copolymers and poly(acrylic acid) in aqueous solutions resulted in the formation of interpolymer complexes stabilised by hydrogen bonds and hydrophobic interactions. This interaction was significantly affected by solution I pH and led to modification of the temperature-responsive behaviour of the copolymers.
Resumo:
Novel water-soluble amphiphilic copolymers have been synthesized by free radical copolymerization of 2-hydroxyethylacrylate with vinyl butyl ether. In water these copolymers exhibit lower critical solution temperature, which depends on the content of hydrophobic vinyl butyl ether units. The interaction between these copolymers and poly(acrylic acid) or poly(methacrylic acid) in aqueous solutions results in formation of interpolymer complexes stabilized by hydrogen bonds and hydrophobic interactions. An increase in hydrophobicity of the copolymers leads to the enhancement of their complex formation ability with respect to poly(acrylic acid) and poly(methacrylic acid). Poly(methacrylic acid) forms stronger complexes with the copolymers when compared with poly(acrylic acid). The complexes exhibit dual sensitivity to pH- and temperature and this property may be easily adjusted regulating the strength of interaction. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Secretion of LH and FSH from the anterior pituitary is regulated primarily by hypothalamic GnRH and ovarian steroid hormones. More recent evidence indicates regulatory roles for certain members of the transforming growth factor beta (TGF beta) superfamily including inhibin and activin. The aim of this study was to identify expression of mRNAs encoding key receptors and ligands of the inhibin/activin system in the hen pituitary gland and to monitor their expression throughout the 24-25-h ovulatory cycle. Hens maintained on long days (16 h light/8 h dark) were killed 20, 12, 6 and 2 h before predicted ovulation of a midsequence egg (n = 8 per group). Anterior pituitary glands were removed, RNA extracted and cDNA synthesized. Plasma concentrations of LH, FSH, progesterone and inhibin A were measured. Real-time quantitative PCR was used to quantify pituitary expression of mRNAs encoding betaglycan, activin receptor (ActR) subtypes (type I, IIA), GnRH receptor (GnP,H-R), LH beta subunit, FSH beta subunit and GAPDH. Levels of mRNA for inhibin/activin beta A and beta B subunits, inhibin alpha subunit, follistatin and ActRIIB mRNA in pituitary were undetectable by quantitative PCR (< 2 amol/reaction). Significant changes in expression (P < 0.05) of ActRIIA and betaglycan mRNA were found, both peaking 6 h before ovulation just prior to the preovulatory LH surge and reaching a nadir 2 h before ovulation, just after the LH surge. There were no significant changes in expression of ActRI mRNA throughout the cycle although values were correlated with mRNA levels for both ActRIIA (r=0.77; P < 0.001) and betaglycan (r=0.45; P < 0.01). Expression of GnRH-R mRNA was lowest 20 h before ovulation and highest (P < 0.05) 6 h before ovulation; values were weakly correlated with betaglycan (r=0.33; P=0.06) and ActRIIA (r=0.34; P=0.06) mRNA levels. Expression of mRNAs encoding LH beta and FSH beta subunit were both lowest (P < 0.05) after the LH surge, 2 h before ovulation. These results are consistent with an endocrine, but not a local intrapituitary, role of inhibin-related proteins in modulating gonadotroph function during the ovulatory cycle of the hen, potentially through interaction with betaglycan and ActRIIA. In contrast to mammals, intrapituitary expression of inhibin/activin subunits and follistatin appears to be extremely low or absent in the domestic fowl.
Resumo:
Ovarian follicle development is primarily regulated by an interplay between the pituitary gonadotrophins, LH and FSH, and ovary-derived steroids. Increasing evidence implicates regulatory roles of transforming growth factor-beta (TGF beta) superfamily members, including inhibins and activins. The aim of this study was to identify the expression of mRNAs encoding key receptors of the inhibin/activin system in ovarian follicles ranging from 4 mm in diameter to the dominant F1 follicle (similar to 40 turn). Ovaries were collected (n=16) from inid-sequence hens maintained on a long-day photoschedule (16h of light:8 h of darkness). All follicles removed were dissected into individual granulosa and thecal layers. RNA was extracted and cDNA synthesized. Real-time quantitative PCR was used to quantify the expression of niRNA encoding betaglycan, activin receptor (ActR) subtypes (type-I, -IIA and -IIB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH); receptor expression data were normalized to GAPDH expression. Detectable levels of ActRI, -IIA and -IIB and the inhibin co-receptor (betaglycan) expression were found in all granulosa and thecal layers analysed. Granulosa ActRI mRNA peaked (P < 0(.)05) in 8-9(.)9 mm follicles, whereas ActRIIA rose significantly from 6-7(.)9 mm to 8-9(.)9 nun, before filling to F3/2; levels then rose sharply (3-fold) to F1 levels. Granulosa betaglycan niRNA expression rose 3-fold from 4-5(.)9 min to 8-9(.)9 mm, before falling 4-fold to F3/2; levels then rose sharply (4-fold) to F1 levels. ActRIIB levels did not vary significantly during follicular development. Thecal ActRI mRNA expression was similar from 4-7(.)9 mm then decreased significantly to a nadir at the F4 position, before increasing 2-fold to the F1 (P < 0(.)05). Although thecal ActRIIB and -IIA expression did not vary significantly from 4 nim to F3, ActRIIB expression increased significantly (2-fold) from F3 to F1 and ActIIA, increased 22-fold from F2 to F1 (P < 0(.)05). Thecal betaglycan fell to a nadir at F6 after follicle selection; levels then increased significantly to F2, before filling similar to 50% in the F I. In all follicles studied expression of betaglycan and ActRI (granulosa: 1-0(.)65, P < 0-001, n=144/group; theca: r=0(.)49, P < 0-001, n=144/group) was well correlated. No significant correlations were identified between betaglycan and ActRIIA or -IIB. Considering all follicles analysed, granulosa mRNA expression of betaglycan, ActRI ActRIIA and ActRIIB were all significantly lower than in corresponding thecal tissue (betaglycan, 11(.)4-fold; ActRIIB, 5(.)1-fold; ActR(.) 3-8-fold: ActRIIA, 2(.)8-fold). The co-localization of type-I and -II activin receptors and betaglycan on granulosa and thecal cells are consistent with a local auto/paracrine role of inhibins and activins in modulating ovarian follicle development, selection and progression in the domestic fowl.
Resumo:
Interaction of G-protein-coupled receptors with beta-arrestins is an important step in receptor desensitization and in triggering "alternative" signals. By means of confocal microscopy and fluorescence resonance energy transfer, we have investigated the internalization of the human P2Y receptors 1, 2, 4, 6, 11, and 12 and their interaction with beta-arrestin-1 and -2. Co-transfection of each individual P2Y receptor with beta-arrestin-1-GFP or beta-arrestin-2-YFP into HEK-293 cells and stimulation with the corresponding agonists resulted in a receptor-specific interaction pattern. The P2Y(1) receptor stimulated with ADP strongly translocated beta-arrestin-2-YFP, whereas only a slight translocation was observed for beta-arrestin-1-GFP. The P2Y(4) receptor exhibited equally strong translocation for beta-arrestin-1-GFP and beta-arrestin-2YFP when stimulated with UTP. The P2Y(6), P2Y(11), and P2Y(12) receptor internalized only when GRK2 was additionally cotransfected, but beta-arrestin translocation was only visible for the P2Y(6) and P2Y(11) receptor. The P2Y(2) receptor showed a beta-arrestin translocation pattern that was dependent on the agonist used for stimulation. UTP translocated beta-arrestin-1-GFP and beta-arrestin-2-YFP equally well, whereas ATP translocated beta-arrestin-1-GFP to a much lower extent than beta-arrestin2- YFP. The same agonist-dependent pattern was seen in fluorescence resonance energy transfer experiments between the fluorescently labeled P2Y(2) receptor and beta-arrestins. Thus, the P2Y(2) receptor would be classified as a class A receptor when stimulated with ATP or as a class B receptor when stimulated with UTP. The ligand-specific recruitment of beta-arrestins by ATP and UTP stimulation of P2Y(2) receptors was further found to result in differential stimulation of ERK phosphorylation. This suggests that the two different agonists induce distinct active states of this receptor that show differential interactions with beta-arrestins.
Resumo:
Ionotropic gamma-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for rho subunit-containing GABA(C) over other GABA receptors. Exogenous application of the GABA(C)-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABA(C) antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABA(A) receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABA(A)/GABA(C) pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone-Purkinje cell (IN-PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that rho subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABA(A) alpha 1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that rho subunits can form complexes with GABA(A) receptor alpha 1 subunits in the cerebellar cortex. Overall, these data suggest that rho subunits contribute to functional ionotropic receptors that mediate a component of phasic inhibitory GABAergic transmission at IN-PC synapses in the cerebellum.
Resumo:
In positron emission tomography and single photon emission computed tomography studies using D2 dopamine (DA) receptor radiotracers, a decrease in radiotracer binding potential (BP) is usually interpreted in terms of increased competition with synaptic DA. However, some data suggest that this signal may also reflect agonist (DA)-induced increases in D2 receptor (D2R) internalization, a process which would presumably also decrease the population of receptors available for binding to hydrophilic radioligands. To advance interpretation of alterations in D2 radiotracer BP, direct methods of assessment of D2R internalization are required. Here, we describe a confocal microscopy-based approach for the quantification of agonist-dependent receptor internalization. The method relies upon double-labeling of the receptors with antibodies directed against intracellular as well as extracellular epitopes. Following agonist stimulation, DA D2R internalization was quantified by differentiating, in optical cell sections, the signal due to the staining of the extracellular from intracellular epitopes of D2Rs. Receptor internalization was increased in the presence of the D2 agonists DA and bromocriptine, but not the D1 agonist SKF38393. Pretreatment with either the D2 antagonist sulpiride, or inhibitors of internalization (phenylarsine oxide and high molarity sucrose), blocked D2-agonist induced receptor internalization, thus validating this method in vitro. This approach therefore provides a direct and streamlined methodology for investigating the pharmacological and mechanistic aspects of D2R internalization, and should inform the interpretation of results from in vivo receptor imaging studies.
Resumo:
We reported previously that bone morphogenetic proteins (BMPs) potently suppress CYP17 expression and androgen production by bovine theca interna cells (TC) in vitro. In this study, real-time PCR was used to analyse gene expression in TC and granulosa cell (GC) layers from developing bovine antral follicles (1-18 mm). Abundance of mRNA transcripts for four BMPs (BMP2, BMP4, BMP6, and BMP7) and associated type I (BMPR1A, BMPR1B, ACVR1 and ACVR1B) and type II (BMPR2, ACVR2A and ACVR2B) receptors showed relatively modest, though significant, changes during follicle development. BMP2 was selectively expressed in GC, while BMP6, BMP7 and betaglycan (TGFBR3) were more abundant in TC. Abundance of betaglycan mRNA (inhibin co-receptor) in TC increased progressively (fivefold; P<0.001) as follicles grew from 1-2 to 9-10 mm. This suggests a shift in thecal responsiveness to GC-derived inhibin, produced in increasing amounts as follicles achieve dominance. This prompted us to investigate whether inhibin can function as a physiological antagonist of BMP action on bovine TC in vitro, in a manner comparable to that for activin signalling. BMP4, BMP6 and BMP7 abolished LH-induced androstenedione secretion and suppressed CYP17 mRNA >200-fold (P<0.001), while co-treatment with inhibin-A reversed the suppressive action of BMP in each case (P<0.001). Results support a physiological role for granulosa-derived inhibin as an antagonist of BMP action on thecal androgen synthesis. A shift in intrafollicular balance between thecal BMP signalling (inhibitory for androgen synthesis) and betaglycan-dependent inhibin signalling (stimulatory for androgen synthesis) accords with the physiological requirement to deliver an adequate supply of aromatase substrate to GC of developing follicles.
Resumo:
Selected water-soluble precursors, including sugars, free amino acids and nucleotides, were quantified in raw and cooked goat meat, as a part of a study which the main aim was to better understand the aroma formation in goat meat. When compared with the same precursors in beef, lamb and chicken, levels in goat meat were generally similar, except for fructose and glycine, which were present at higher concentrations in goat meat. Fructose, glucose, IMP, and cysteine suffered the greatest losses during the cooking process and seem to be most involved in aroma formation in goat meat. The effects of these precursor changes on the volatile compound composition and formation process of them on cooked goat meat are discussed.
Resumo:
Epidemics of community-acquired Staphylococcus aureus are caused by strains producing high concentrations of phenol-soluble modulins (PSMs). How neutrophils sense PSMs is revealed in this issue of Cell Host & Microbe. Such interactions are key to infection outcome and may be the basis for development of new treatment strategies.
Resumo:
The related inflammatory cytokines, interleukin- (IL-) 1β and IL-33, are both implicated in the response of the heart to injury. They also activate mitogen-activated protein kinases (MAPKs) in cardiac myocytes. The hypertrophic Gq protein-coupled receptor agonist endothelin-1 is a potentially cardioprotective peptide and may modulate the inflammatory response. Endothelin-1 also stimulates (MAPKs) in cardiac myocytes and promotes rapid changes in expression of mRNAs encoding intercellular and intracellular signalling components including receptors for IL-33 (ST2) and phosphoprotein phosphatases. Prior exposure to endothelin-1 may specifically modulate the response to IL-33 and, more globally, influence MAPK activation by different stimuli. Neonatal rat ventricular myocytes were exposed to IL-1β or IL-33 with or without pre-exposure to endothelin-1 (5 h) and MAPK activation assessed. IL-33 activated ERK1/2, JNKs and p38-MAPK, but to a lesser degree than IL-1β. Endothelin-1 increased expression of soluble IL-33 receptors (sST2 receptors) which may prevent binding of IL-33 to the cell-surface receptors. However, pretreatment with endothelin-1 only inhibited activation of p38-MAPK by IL-33 with no significant influence on ERK1/2 and a small increase in activation of JNKs. Inhibition of p38-MAPK signalling following pretreatment with endothelin-1 was also detected with IL-1β, H2O2 or tumour necrosis factor α (TNFα) indicating an effect intrinsic to the signalling pathway. Endothelin-1 pretreatment suppressed the increase in expression of IL-6 mRNA induced by IL-1β and decreased the duration of expression of TNFα mRNA. Coupled with the general decrease in p38-MAPK signalling, we conclude that endothelin-1 attenuates the cardiac myocyte inflammatory response, potentially to confer cardioprotection.