93 resultados para Root Mean Squared Error (RMSE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative rate method has been used to measure the room-temperature rate constants for the gasphase reactions of ozone and NO3 with selected monoterpenes and cyclo-alkenes with structural similarities to monoterpenes. Measurements were carried out at 298 ! 2 K and 760 ! 10 Torr. The following rate constants (in units of 10"18 cm3 molecule"1 s"1) were obtained for the reaction with ozone: methyl cyclohexene (132 ! 17), terpinolene (1290 ! 360), ethylidene cyclohexane (223 ! 57), norbornene (860 ! 240), t-butyl isopropylidene cyclohexane (1500 ! 460), cyclopentene (543 ! 94), cyclohexene (81 ! 18), cyclooctene (451 ! 66), dicyclopentadiene (1460 ! 170) and a-pinene (107 ! 13). For the reaction with NO3 the rate constants obtained (in units of 10"12 cm3 molecule"1 s"1) were: methyl cyclohexene (7.92 ! 0.95), terpinolene (47.9 ! 4.0), ethylidene cyclohexane (4.30 ! 0.24), norbornene (0.266 ! 0.029), cyclohexene (0.540 ! 0.017), cyclooctene (0.513 ! 0.029), dicyclopentadiene (1.20 ! 0.10) and a-pinene (5.17 ! 0.62). Errors are quoted as the root mean square of the statistical error (95% con!dence) and the quoted error in the rate constant for the reference compound. Combining these results with previous studies, new recommendations for the rate constants are presented. Molecular orbital energies were calculated for each alkene and the kinetic data are discussed in terms of the deviation from the structureeactivity relationship obtained from the rate constants for a series of simple alkenes. Lifetimes with respect to key initiators of atmospheric oxidation have been calculated suggesting that the studied reactions play dominant roles in the night-time removal of these compounds from the atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As low carbon technologies become more pervasive, distribution network operators are looking to support the expected changes in the demands on the low voltage networks through the smarter control of storage devices. Accurate forecasts of demand at the single household-level, or of small aggregations of households, can improve the peak demand reduction brought about through such devices by helping to plan the appropriate charging and discharging cycles. However, before such methods can be developed, validation measures are required which can assess the accuracy and usefulness of forecasts of volatile and noisy household-level demand. In this paper we introduce a new forecast verification error measure that reduces the so called “double penalty” effect, incurred by forecasts whose features are displaced in space or time, compared to traditional point-wise metrics, such as Mean Absolute Error and p-norms in general. The measure that we propose is based on finding a restricted permutation of the original forecast that minimises the point wise error, according to a given metric. We illustrate the advantages of our error measure using half-hourly domestic household electrical energy usage data recorded by smart meters and discuss the effect of the permutation restriction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the operational Sea Surface Temperature (SST) products derived from satellite infrared radiometry use multi-spectral algorithms. They show, in general, reasonable performances with root mean square (RMS) residuals around 0.5 K when validated against buoy measurements, but have limitations, particularly a component of the retrieval error that relates to such algorithms' limited ability to cope with the full variability of atmospheric absorption and emission. We propose to use forecast atmospheric profiles and a radiative transfer model to simulate the algorithmic errors of multi-spectral algorithms. In the practical case of SST derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG), we demonstrate that simulated algorithmic errors do explain a significant component of the actual errors observed for the non linear (NL) split window algorithm in operational use at the Centre de Météorologie Spatiale (CMS). The simulated errors, used as correction terms, reduce significantly the regional biases of the NL algorithm as well as the standard deviation of the differences with drifting buoy measurements. The availability of atmospheric profiles associated with observed satellite-buoy differences allows us to analyze the origins of the main algorithmic errors observed in the SEVIRI field of view: a negative bias in the inter-tropical zone, and a mid-latitude positive bias. We demonstrate how these errors are explained by the sensitivity of observed brightness temperatures to the vertical distribution of water vapour, propagated through the SST retrieval algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine how the accuracy of real-time forecasts from models that include autoregressive terms can be improved by estimating the models on ‘lightly revised’ data instead of using data from the latest-available vintage. The benefits of estimating autoregressive models on lightly revised data are related to the nature of the data revision process and the underlying process for the true values. Empirically, we find improvements in root mean square forecasting error of 2–4% when forecasting output growth and inflation with univariate models, and of 8% with multivariate models. We show that multiple-vintage models, which explicitly model data revisions, require large estimation samples to deliver competitive forecasts. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current feed evaluation systems for ruminants are too imprecise to describe diets in terms of their acidosis risk. The dynamic mechanistic model described herein arises from the integration of a lactic acid (La) metabolism module into an extant model of whole-rumen function. The model was evaluated using published data from cows and sheep fed a range of diets or infused with various doses of La. The model performed well in simulating peak rumen La concentrations (coefficient of determination = 0.96; root mean square prediction error = 16.96% of observed mean), although frequency of sampling for the published data prevented a comprehensive comparison of prediction of time to peak La accumulation. The model showed a tendency for increased La accumulation following feeding of diets rich in nonstructural carbohydrates, although less-soluble starch sources such as corn tended to limit rumen La concentration. Simulated La absorption from the rumen remained low throughout the feeding cycle. The competition between bacteria and protozoa for rumen La suggests a variable contribution of protozoa to total La utilization. However, the model was unable to simulate the effects of defaunation on rumen La metabolism, indicating a need for a more detailed description of protozoal metabolism. The model could form the basis of a feed evaluation system with regard to rumen La metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2 . The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clustering is defined as the grouping of similar items in a set, and is an important process within the field of data mining. As the amount of data for various applications continues to increase, in terms of its size and dimensionality, it is necessary to have efficient clustering methods. A popular clustering algorithm is K-Means, which adopts a greedy approach to produce a set of K-clusters with associated centres of mass, and uses a squared error distortion measure to determine convergence. Methods for improving the efficiency of K-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting a more efficient data structure, notably a multi-dimensional binary search tree (KD-Tree) to store either centroids or data points. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient K-Means techniques in parallel computational environments. In this work, we provide a parallel formulation for the KD-Tree based K-Means algorithm and address its load balancing issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Space weather effects on technological systems originate with energy carried from the Sun to the terrestrial environment by the solar wind. In this study, we present results of modeling of solar corona-heliosphere processes to predict solar wind conditions at the L1 Lagrangian point upstream of Earth. In particular we calculate performance metrics for (1) empirical, (2) hybrid empirical/physics-based, and (3) full physics-based coupled corona-heliosphere models over an 8-year period (1995–2002). L1 measurements of the radial solar wind speed are the primary basis for validation of the coronal and heliosphere models studied, though other solar wind parameters are also considered. The models are from the Center for Integrated Space-Weather Modeling (CISM) which has developed a coupled model of the whole Sun-to-Earth system, from the solar photosphere to the terrestrial thermosphere. Simple point-by-point analysis techniques, such as mean-square-error and correlation coefficients, indicate that the empirical coronal-heliosphere model currently gives the best forecast of solar wind speed at 1 AU. A more detailed analysis shows that errors in the physics-based models are predominately the result of small timing offsets to solar wind structures and that the large-scale features of the solar wind are actually well modeled. We suggest that additional “tuning” of the coupling between the coronal and heliosphere models could lead to a significant improvement of their accuracy. Furthermore, we note that the physics-based models accurately capture dynamic effects at solar wind stream interaction regions, such as magnetic field compression, flow deflection, and density buildup, which the empirical scheme cannot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Constant-α force-free magnetic flux rope models have proven to be a valuable first step toward understanding the global context of in situ observations of magnetic clouds. However, cylindrical symmetry is necessarily assumed when using such models, and it is apparent from both observations and modeling that magnetic clouds have highly noncircular cross sections. A number of approaches have been adopted to relax the circular cross section approximation: frequently, the cross-sectional shape is allowed to take an arbitrarily chosen shape (usually elliptical), increasing the number of free parameters that are fit between data and model. While a better “fit” may be achieved in terms of reducing the mean square error between the model and observed magnetic field time series, it is not always clear that this translates to a more accurate reconstruction of the global structure of the magnetic cloud. We develop a new, noncircular cross section flux rope model that is constrained by observations of CMEs/ICMEs and knowledge of the physical processes acting on the magnetic cloud: The magnetic cloud is assumed to initially take the form of a force-free flux rope in the low corona but to be subsequently deformed by a combination of axis-centered self-expansion and heliocentric radial expansion. The resulting analytical solution is validated by fitting to artificial time series produced by numerical MHD simulations of magnetic clouds and shown to accurately reproduce the global structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the primary goals of the Center for Integrated Space Weather Modeling (CISM) effort is to assess and improve prediction of the solar wind conditions in near‐Earth space, arising from both quasi‐steady and transient structures. We compare 8 years of L1 in situ observations to predictions of the solar wind speed made by the Wang‐Sheeley‐Arge (WSA) empirical model. The mean‐square error (MSE) between the observed and model predictions is used to reach a number of useful conclusions: there is no systematic lag in the WSA predictions, the MSE is found to be highest at solar minimum and lowest during the rise to solar maximum, and the optimal lead time for 1 AU solar wind speed predictions is found to be 3 days. However, MSE is shown to frequently be an inadequate “figure of merit” for assessing solar wind speed predictions. A complementary, event‐based analysis technique is developed in which high‐speed enhancements (HSEs) are systematically selected and associated from observed and model time series. WSA model is validated using comparisons of the number of hit, missed, and false HSEs, along with the timing and speed magnitude errors between the forecasted and observed events. Morphological differences between the different HSE populations are investigated to aid interpretation of the results and improvements to the model. Finally, by defining discrete events in the time series, model predictions from above and below the ecliptic plane can be used to estimate an uncertainty in the predicted HSE arrival times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improvements in the resolution of satellite imagery have enabled extraction of water surface elevations at the margins of the flood. Comparison between modelled and observed water surface elevations provides a new means for calibrating and validating flood inundation models, however the uncertainty in this observed data has yet to be addressed. Here a flood inundation model is calibrated using a probabilistic treatment of the observed data. A LiDAR guided snake algorithm is used to determine an outline of a flood event in 2006 on the River Dee, North Wales, UK, using a 12.5m ERS-1 image. Points at approximately 100m intervals along this outline are selected, and the water surface elevation recorded as the LiDAR DEM elevation at each point. With a planar water surface from the gauged upstream to downstream water elevations as an approximation, the water surface elevations at points along this flooded extent are compared to their ‘expected’ value. The pattern of errors between the two show a roughly normal distribution, however when plotted against coordinates there is obvious spatial autocorrelation. The source of this spatial dependency is investigated by comparing errors to the slope gradient and aspect of the LiDAR DEM. A LISFLOOD-FP model of the flood event is set-up to investigate the effect of observed data uncertainty on the calibration of flood inundation models. Multiple simulations are run using different combinations of friction parameters, from which the optimum parameter set will be selected. For each simulation a T-test is used to quantify the fit between modelled and observed water surface elevations. The points chosen for use in this T-test are selected based on their error. The criteria for selection enables evaluation of the sensitivity of the choice of optimum parameter set to uncertainty in the observed data. This work explores the observed data in detail and highlights possible causes of error. The identification of significant error (RMSE = 0.8m) between approximate expected and actual observed elevations from the remotely sensed data emphasises the limitations of using this data in a deterministic manner within the calibration process. These limitations are addressed by developing a new probabilistic approach to using the observed data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High resolution vibration-rotation spectra of 13C2H2 were recorded in a number of regions from 2000 to 5200 cm−1 at Doppler or pressure limited resolution. In these spectral ranges cold and hot bands involving the bending-stretching combination levels have been analyzed up to high J values. Anharmonic quartic resonances for the combination levels ν1 + mν4 + nν5, ν2 + mν4 + (n + 2) ν5 and ν3 + (m − 1) ν4 + (n + 1) ν5 have been studied, and the l-type resonances within each polyad have been explicitly taken into account in the analysis of the data. The least-squares refinement provides deperturbed values for band origins and rotational constants, obtained by fitting rotation lines only up to J ≈ 20 with root mean square errors of ≈ 0.0003 cm−1. The band origins allowed us to determine a number of the anharmonicity constants xij0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theory of harmonic force constant refinement calculations is reviewed, and a general-purpose program for force constant and normal coordinate calculations is described. The program, called ASYM20. is available through Quantum Chemistry Program Exchange. It will work on molecules of any symmetry containing up to 20 atoms and will produce results on a series of isotopomers as desired. The vibrational secular equations are solved in either nonredundant valence internal coordinates or symmetry coordinates. As well as calculating the (harmonic) vibrational wavenumbers and normal coordinates, the program will calculate centrifugal distortion constants, Coriolis zeta constants, harmonic contributions to the α′s. root-mean-square amplitudes of vibration, and other quantities related to gas electron-diffraction studies and thermodynamic properties. The program will work in either a predict mode, in which it calculates results from an input force field, or in a refine mode, in which it refines an input force field by least squares to fit observed data on the quantities mentioned above. Predicate values of the force constants may be included in the data set for a least-squares refinement. The program is written in FORTRAN for use on a PC or a mainframe computer. Operation is mainly controlled by steering indices in the input data file, but some interactive control is also implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary purpose of this study was to model the partitioning of evapotranspiration in a maize-sunflower intercrop at various canopy covers. The Shuttleworth-Wallace (SW) model was extended for intercropping systems to include both crop transpiration and soil evaporation and allowing interaction between the two. To test the accuracy of the extended SW model, two field experiments of maize-sunflower intercrop were conducted in 1998 and 1999. Plant transpiration and soil evaporation were measured using sap flow gauges and lysimeters, respectively. The mean prediction error (simulated minus measured values) for transpiration was zero (which indicated no overall bias in estimation error), and its accuracy was not affected by the plant growth stages, but simulated transpiration during high measured transpiration rates tended to be slightly underestimated. Overall, the predictions for daily soil evaporation were also accurate. Model estimation errors were probably due to the simplified modelling of soil water content, stomatal resistances and soil heat flux as well as due to the uncertainties in characterising the 2 micrometeorological conditions. The SW’s prediction of transpiration was most sensitive to parameters most directly related to the canopy characteristics such as the partitioning of captured solar radiation, canopy resistance, and bulk boundary layer resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents a new simple approach for combining empirical with raw (i.e., not bias corrected) coupled model ensemble forecasts in order to make more skillful interval forecasts of ENSO. A Bayesian normal model has been used to combine empirical and raw coupled model December SST Niño-3.4 index forecasts started at the end of the preceding July (5-month lead time). The empirical forecasts were obtained by linear regression between December and the preceding July Niño-3.4 index values over the period 1950–2001. Coupled model ensemble forecasts for the period 1987–99 were provided by ECMWF, as part of the Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction (DEMETER) project. Empirical and raw coupled model ensemble forecasts alone have similar mean absolute error forecast skill score, compared to climatological forecasts, of around 50% over the period 1987–99. The combined forecast gives an increased skill score of 74% and provides a well-calibrated and reliable estimate of forecast uncertainty.