130 resultados para Robustness
Resumo:
A first step in interpreting the wide variation in trace gas concentrations measured over time at a given site is to classify the data according to the prevailing weather conditions. In order to classify measurements made during two intensive field campaigns at Mace Head, on the west coast of Ireland, an objective method of assigning data to different weather types has been developed. Air-mass back trajectories calculated using winds from ECMWF analyses, arriving at the site in 1995–1997, were allocated to clusters based on a statistical analysis of the latitude, longitude and pressure of the trajectory at 12 h intervals over 5 days. The robustness of the analysis was assessed by using an ensemble of back trajectories calculated for four points around Mace Head. Separate analyses were made for each of the 3 years, and for four 3-month periods. The use of these clusters in classifying ground-based ozone measurements at Mace Head is described, including the need to exclude data which have been influenced by local perturbations to the regional flow pattern, for example, by sea breezes. Even with a limited data set, based on 2 months of intensive field measurements in 1996 and 1997, there are statistically significant differences in ozone concentrations in air from the different clusters. The limitations of this type of analysis for classification and interpretation of ground-based chemistry measurements are discussed.
Resumo:
A new self-tuning implicit pole-assignment algorithm is presented which, through the use of a pole compression factor and different RLS model and control structures, overcomes stability and convergence problems encountered in previously available algorithms. Computational requirements of the technique are much reduced when compared to explicit pole-assignment schemes, whereas the inherent robustness of the strategy is retained.
Resumo:
Peak picking is an early key step in MS data analysis. We compare three commonly used approaches to peak picking and discuss their merits by means of statistical analysis. Methods investigated encompass signal-to-noise ratio, continuous wavelet transform, and a correlation-based approach using a Gaussian template. Functionality of the three methods is illustrated and discussed in a practical context using a mass spectral data set created with MALDI-TOF technology. Sensitivity and specificity are investigated using a manually defined reference set of peaks. As an additional criterion, the robustness of the three methods is assessed by a perturbation analysis and illustrated using ROC curves.
Resumo:
A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model robustness and adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the model subset selection cost function includes a D-optimality design criterion that maximizes the determinant of the design matrix of the subset to ensure the model robustness, adequacy, and parsimony of the final model. The proposed approach is based on the forward orthogonal least square (OLS) algorithm, such that new D-optimality-based cost function is constructed based on the orthogonalization process to gain computational advantages and hence to maintain the inherent advantage of computational efficiency associated with the conventional forward OLS approach. Illustrative examples are included to demonstrate the effectiveness of the new approach.
Resumo:
In this paper we present a connectionist searching technique - the Stochastic Diffusion Search (SDS), capable of rapidly locating a specified pattern in a noisy search space. In operation SDS finds the position of the pre-specified pattern or if it does not exist - its best instantiation in the search space. This is achieved via parallel exploration of the whole search space by an ensemble of agents searching in a competitive cooperative manner. We prove mathematically the convergence of stochastic diffusion search. SDS converges to a statistical equilibrium when it locates the best instantiation of the object in the search space. Experiments presented in this paper indicate the high robustness of SDS and show good scalability with problem size. The convergence characteristic of SDS makes it a fully adaptive algorithm and suggests applications in dynamically changing environments.
Resumo:
Little has so far been reported on the robustness of non-orthogonal space-time block codes (NO-STBCs) over highly correlated channels (HCC). Some of the existing NO-STBCs are indeed weak in robustness against HCC. With a view to overcoming such a limitation, a generalisation of the existing robust NO-STBCs based on a 'matrix Alamouti (MA)' structure is presented.
Resumo:
This paper introduces a new blind equalisation algorithm for the pulse amplitude modulation (PAM) data transmitted through nonminimum phase (NMP) channels. The algorithm itself is based on a noncausal AR model of communication channels and the second- and fourth-order cumulants of the received data series, where only the diagonal slices of cumulants are used. The AR parameters are adjusted at each sample by using a successive over-relaxation (SOR) scheme, a variety of the ordinary LMS scheme, but with a faster convergence rate and a greater robustness to the selection of the ‘step-size’ in iterations. Computer simulations are implemented for both linear time-invariant (LTI) and linear time-variant (LTV) NMP channels, and the results show that the algorithm proposed in this paper has a fast convergence rate and a potential capability to track the LTV NMP channels.
Resumo:
Several non-orthogonal space-time block coding (NO-STBC) schemes have recently been proposed to achieve full rate transmission. Some of these schemes, however, suffer from weak robustness: their channel matrices will become ill conditioned in the case of highly correlated channels (HCC). To address this issue, this paper derives a family of robust NO-STBC schemes for four Tx antennas based on the worst case of HCC. These codes turned out to be a superset of Jafarkhani's quasi-orthogonal STBC codes. A computationally affordable linear decoder is also proposed. Although these codes achieve a similar performance to the non-robust schemes under normal channel conditions, they offer a strong robustness against HCC (although possibly yielding a poorer performance). Finally, computer simulations are presented to verify the algorithm design.
Resumo:
In this paper we discuss current work concerning Appearance-based and CAD-based vision; two opposing vision strategies. CAD-based vision is geometry based, reliant on having complete object centred models. Appearance-based vision builds view dependent models from training images. Existing CAD-based vision systems that work with intensity images have all used one and zero dimensional features, for example lines, arcs, points and corners. We describe a system we have developed for combining these two strategies. Geometric models are extracted from a commercial CAD library of industry standard parts. Surface appearance characteristics are then learnt automatically by observing actual object instances. This information is combined with geometric information and is used in hypothesis evaluation. This augmented description improves the systems robustness to texture, specularities and other artifacts which are hard to model with geometry alone, whilst maintaining the advantages of a geometric description.
Resumo:
A novel Neuropredictive Teleoperation (NPT) Scheme is presented. The design results from two key ideas: the exploitation of the measured or estimated neural input to the human arm or its electromyograph (EMG) as the system input and the employment of a predictor of the arm movement, based on this neural signal and an arm model, to compensate for time delays in the system. Although a multitude of such models, as well as measuring devices for the neural signals and the EMG, have been proposed, current telemanipulator research has only been considering highly simplified arm models. In the present design, the bilateral constraint that the master and slave are simultaneously compliant to each other's state (equal positions and forces) is abandoned, thus obtaining a simple to analyzesuccession of only locally controlled modules, and a robustness to time delays of up to 500 ms. The proposed designs were inspired by well established physiological evidence that the brain, rather than controlling the movement on-line, programs the arm with an action plan of a complete movement, which is then executed largely in open loop, regulated only by local reflex loops. As a model of the human arm the well-established Stark model is employed, whose mathematical representation is modified to make it suitable for an engineering application. The proposed scheme is however valid for any arm model. BIBO-stability and passivity results for a variety of local control laws are reported. Simulation results and comparisons with traditional designs also highlight the advantages of the proposed design.
Resumo:
In this chapter we described how the inclusion of a model of a human arm, combined with the measurement of its neural input and a predictor, can provide to a previously proposed teleoperator design robustness under time delay. Our trials gave clear indications of the superiority of the NPT scheme over traditional as well as the modified Yokokohji and Yoshikawa architectures. Its fundamental advantages are: the time-lead of the slave, the more efficient, and providing a more natural feeling manipulation, and the fact that incorporating an operator arm model leads to more credible stability results. Finally, its simplicity allows less likely to fail local control techniques to be employed. However, a significant advantage for the enhanced Yokokohji and Yoshikawa architecture results from the very fact that it’s a conservative modification of current designs. Under large prediction errors, it can provide robustness through directing the master and slave states to their means and, since it relies on the passivity of the mechanical part of the system, it would not confuse the operator. An experimental implementation of the techniques will provide further evidence for the performance of the proposed architectures. The employment of neural networks and fuzzy logic, which will provide an adaptive model of the human arm and robustifying control terms, is scheduled for the near future.
Resumo:
Within the context of active vision, scant attention has been paid to the execution of motion saccades—rapid re-adjustments of the direction of gaze to attend to moving objects. In this paper we first develop a methodology for, and give real-time demonstrations of, the use of motion detection and segmentation processes to initiate capture saccades towards a moving object. The saccade is driven by both position and velocity of the moving target under the assumption of constant target velocity, using prediction to overcome the delay introduced by visual processing. We next demonstrate the use of a first order approximation to the segmented motion field to compute bounds on the time-to-contact in the presence of looming motion. If the bound falls below a safe limit, a panic saccade is fired, moving the camera away from the approaching object. We then describe the use of image motion to realize smooth pursuit, tracking using velocity information alone, where the camera is moved so as to null a single constant image motion fitted within a central image region. Finally, we glue together capture saccades with smooth pursuit, thus effecting changes in both what is being attended to and how it is being attended to. To couple the different visual activities of waiting, saccading, pursuing and panicking, we use a finite state machine which provides inherent robustness outside of visual processing and provides a means of making repeated exploration. We demonstrate in repeated trials that the transition from saccadic motion to tracking is more likely to succeed using position and velocity control, than when using position alone.
Resumo:
This paper investigates the robustness of a hybrid analog/digital feedback active noise cancellation (ANC) headset system. The digital ANC systems with the filtered-x least-mean-square (FXLMS) algorithm require accurate estimation of the secondary path for the stability and convergence of the algorithm. This demands a great challenge for the ANC headset design because the secondary path may fluctuate dramatically such as when the user adjusts the position of the ear-cup. In this paper, we analytically show that adding an analog feedback loop into the digital ANC systems can effectively reduce the plant fluctuation, thus achieving a more robust system. The method for designing the analog controller is highlighted. A practical hybrid analog/digital feedback ANC headset has been built and used to conduct experiments, and the experimental results show that the hybrid headset system is more robust under large plant fluctuation, and has achieved satisfactory noise cancellation for both narrowband and broadband noises.
Resumo:
This paper describes the recent developments and improvements made to the variable radius niching technique called Dynamic Niche Clustering (DNC). DNC is fitness sharing based technique that employs a separate population of overlapping fuzzy niches with independent radii which operate in the decoded parameter space, and are maintained alongside the normal GA population. We describe a speedup process that can be applied to the initial generation which greatly reduces the complexity of the initial stages. A split operator is also introduced that is designed to counteract the excessive growth of niches, and it is shown that this improves the overall robustness of the technique. Finally, the effect of local elitism is documented and compared to the performance of the basic DNC technique on a selection of 2D test functions. The paper is concluded with a view to future work to be undertaken on the technique.
Resumo:
The authors describe the design of a fuzzy logic controller for the control of a planar two-link manipulator. The plant is quasi-decoupled with respect to gravity. Complete decoupling is not achieved due to the nonoptimal nature of the expert rules. The performance of the fuzzy controller is compared to that of the critically damped computed torque controller. Results are presented complete with robustness tests.