100 resultados para Right of property
Resumo:
Investment risk models with infinite variance provide a better description of distributions of individual property returns in the IPD UK database over the period 1981 to 2003 than normally distributed risk models. This finding mirrors results in the US and Australia using identical methodology. Real estate investment risk is heteroskedastic, but the characteristic exponent of the investment risk function is constant across time – yet it may vary by property type. Asset diversification is far less effective at reducing the impact of non‐systematic investment risk on real estate portfolios than in the case of assets with normally distributed investment risk. The results, therefore, indicate that multi‐risk factor portfolio allocation models based on measures of investment codependence from finite‐variance statistics are ineffective in the real estate context
A message from the Oracle: the land use impact of a major in-town shopping centre on local retailing
Resumo:
Decision theory is the study of models of judgement involved in, and leading to, deliberate and (usually) rational choice. In real estate investment there are normative models for the allocation of assets. These asset allocation models suggest an optimum allocation between the respective asset classes based on the investors’ judgements of performance and risk. Real estate is selected, as other assets, on the basis of some criteria, e.g. commonly its marginal contribution to the production of a mean variance efficient multi asset portfolio, subject to the investor’s objectives and capital rationing constraints. However, decisions are made relative to current expectations and current business constraints. Whilst a decision maker may believe in the required optimum exposure levels as dictated by an asset allocation model, the final decision may/will be influenced by factors outside the parameters of the mathematical model. This paper discusses investors' perceptions and attitudes toward real estate and highlights the important difference between theoretical exposure levels and pragmatic business considerations. It develops a model to identify “soft” parameters in decision making which will influence the optimal allocation for that asset class. This “soft” information may relate to behavioural issues such as the tendency to mirror competitors; a desire to meet weight of money objectives; a desire to retain the status quo and many other non-financial considerations. The paper aims to establish the place of property in multi asset portfolios in the UK and examine the asset allocation process in practice, with a view to understanding the decision making process and to look at investors’ perceptions based on an historic analysis of market expectation; a comparison with historic data and an analysis of actual performance.
Resumo:
Whilst the vast majority of the research on property market forecasting has concentrated on statistical methods of forecasting future rents, this report investigates the process of property market forecast production with particular reference to the level and effect of judgemental intervention in this process. Expectations of future investment performance at the levels of individual asset, sector, region, country and asset class are crucial to stock selection and tactical and strategic asset allocation decisions. Given their centrality to investment performance, we focus on the process by which forecasts of rents and yields are generated and expectations formed. A review of the wider literature on forecasting suggests that there are strong grounds to expect that forecast outcomes are not the result of purely mechanical calculations.
Resumo:
One of the most vexing issues for analysts and managers of property companies across Europe has been the existence and persistence of deviations of Net Asset Values of property companies from their market capitalisation. The issue has clear links to similar discounts and premiums in closed-end funds. The closed end fund puzzle is regarded as an important unsolved problem in financial economics undermining theories of market efficiency and the Law of One Price. Consequently, it has generated a huge body of research. Although it can be tempting to focus on the particular inefficiencies of real estate markets in attempting to explain deviations from NAV, the closed end fund discount puzzle indicates that divergences between underlying asset values and market capitalisation are not a ‘pure’ real estate phenomenon. When examining potential explanations, two recurring factors stand out in the closed end fund literature as often undermining the economic rationale for a discount – the existence of premiums and cross-sectional and periodic fluctuations in the level of discount/premium. These need to be borne in mind when considering potential explanations for real estate markets. There are two approaches to investigating the discount to net asset value in closed-end funds: the ‘rational’ approach and the ‘noise trader’ or ‘sentiment’ approach. The ‘rational’ approach hypothesizes the discount to net asset value as being the result of company specific factors relating to such factors as management quality, tax liability and the type of stocks held by the fund. Despite the intuitive appeal of the ‘rational’ approach to closed-end fund discounts the studies have not successfully explained the variance in closed-end fund discounts or why the discount to net asset value in closed-end funds varies so much over time. The variation over time in the average sector discount is not only a feature of closed-end funds but also property companies. This paper analyses changes in the deviations from NAV for UK property companies between 2000 and 2003. The paper present a new way to study the phenomenon ‘cleaning’ the gearing effect by introducing a new way of calculating the discount itself. We call it “ungeared discount”. It is calculated by assuming that a firm issues new equity to repurchase outstanding debt without any variation on asset side. In this way discount does not depend on an accounting effect and the analysis should better explain the effect of other independent variables.
Resumo:
The performance of various statistical models and commonly used financial indicators for forecasting securitised real estate returns are examined for five European countries: the UK, Belgium, the Netherlands, France and Italy. Within a VAR framework, it is demonstrated that the gilt-equity yield ratio is in most cases a better predictor of securitized returns than the term structure or the dividend yield. In particular, investors should consider in their real estate return models the predictability of the gilt-equity yield ratio in Belgium, the Netherlands and France, and the term structure of interest rates in France. Predictions obtained from the VAR and univariate time-series models are compared with the predictions of an artificial neural network model. It is found that, whilst no single model is universally superior across all series, accuracy measures and horizons considered, the neural network model is generally able to offer the most accurate predictions for 1-month horizons. For quarterly and half-yearly forecasts, the random walk with a drift is the most successful for the UK, Belgian and Dutch returns and the neural network for French and Italian returns. Although this study underscores market context and forecast horizon as parameters relevant to the choice of the forecast model, it strongly indicates that analysts should exploit the potential of neural networks and assess more fully their forecast performance against more traditional models.
Resumo:
This paper uses sales transaction data in order to examine whether flight from risk phenomena took place in the US office property investment market during the financial crisis of 2007-2009. The effect of the crisis on the pricing of property quality attributes, mainly summarized by the class category of each building, is investigated. In addition, the paper examines how turnover levels were affected by the market downturn and whether there were significant variations between different real estate quality types. The results of the hedonic regression models suggest that the price spread between Class, A, B and C grew significantly during the downturn. We also find that property attributes such as size, height and age are priced significantly different in ‘hot’ and ‘cold’ markets.