81 resultados para Ridley, Matt: Jalouden alkuperä
Resumo:
We investigate a coronal mass ejection (CME) propagating toward Earth on 29 March 2011. This event is specifically chosen for its predominately northward directed magnetic field, so that the influence from the momentum flux onto Earth can be isolated. We focus our study on understanding how a small Earth-directed segment propagates. Mass images are created from the white-light cameras onboard STEREO which are also converted into mass height-time maps (mass J-maps). The mass tracks on these J-maps correspond to the sheath region between the CME and its associated shock front as detected by in situ measurements at L1. A time series of mass measurements from the STEREO COR-2A instrument is made along the Earth propagation direction. Qualitatively, this mass time series shows a remarkable resemblance to the L1 in situ density series. The in situ measurements are used as inputs into a three-dimensional (3-D) magnetospheric space weather simulation from the Community Coordinated Modeling Center. These simulations display a sudden compression of the magnetosphere from the large momentum flux at the leading edge of the CME, and predictions are made for the time derivative of the magnetic field (dB/dt) on the ground. The predicted dB/dt values were then compared with the observations from specific equatorially located ground stations and showed notable similarity. This study of the momentum of a CME from the Sun down to its influence on magnetic ground stations on Earth is presented as a preliminary proof of concept, such that future attempts may try to use remote sensing to create density and velocity time series as inputs to magnetospheric simulations.
Resumo:
Geomagnetic activity has long been known to exhibit approximately 27 day periodicity, resulting from solar wind structures repeating each solar rotation. Thus a very simple near-Earth solar wind forecast is 27 day persistence, wherein the near-Earth solar wind conditions today are assumed to be identical to those 27 days previously. Effective use of such a persistence model as a forecast tool, however, requires the performance and uncertainty to be fully characterized. The first half of this study determines which solar wind parameters can be reliably forecast by persistence and how the forecast skill varies with the solar cycle. The second half of the study shows how persistence can provide a useful benchmark for more sophisticated forecast schemes, namely physics-based numerical models. Point-by-point assessment methods, such as correlation and mean-square error, find persistence skill comparable to numerical models during solar minimum, despite the 27 day lead time of persistence forecasts, versus 2–5 days for numerical schemes. At solar maximum, however, the dynamic nature of the corona means 27 day persistence is no longer a good approximation and skill scores suggest persistence is out-performed by numerical models for almost all solar wind parameters. But point-by-point assessment techniques are not always a reliable indicator of usefulness as a forecast tool. An event-based assessment method, which focusses key solar wind structures, finds persistence to be the most valuable forecast throughout the solar cycle. This reiterates the fact that the means of assessing the “best” forecast model must be specifically tailored to its intended use.
Resumo:
The ripening processes of 24 apple cultivars were examined in the United Kingdom National Fruit Collection in 2010. Basically the starch content, and additionally ground colour, water-soluble solids content and flesh firmness were studied during ripening. The degradation of the starch content was evaluated using a 0–10 scale. A starch degradation value of 50% was taken to be the optimum harvest date, with harvest beginning at a value of 40% and finishing at 60%. Depending on the cultivar, this represented a harvest window of 9 to 21 days. Later ripening cultivars matured more slowly, leading to a longer harvesting period, with the exception of cv. Feuillemorte. Pronounced differences were observed among the cultivars on the basis of the starch degradation pattern, allowing them to be divided into four groups. Separate charts were elaborated for each group that are recommended for use in practice.
Resumo:
We report evidence that helps resolve two competing explanations for stability in the mutualism between Ficus racemosa fig trees and the Ceratosolen fusciceps wasps that pollinate them. The wasps lay eggs in the tree's ovules, with each wasp larva developing at the expense of a fig seed. Upon maturity, the female wasps collect pollen and disperse to a new tree, continuing the cycle. Fig fitness is increased by producing both seeds and female wasps, whereas short-term wasp fitness increases only with more wasps, thereby resulting in a conflict of interests. We show experimentally that wasps exploit the inner layers of ovules first (the biased oviposition explanation), which is consistent with optimal-foraging theory. As oviposition increases, seeds in the middle layer are replaced on a one-to-one basis by pollinator offspring, which is also consistent with biased oviposition. Finally, in the outer layer of ovules, seeds disappear but are only partially replaced by pollinator offspring, which suggests high wasp mortality (the biased survival or ‘unbeatable seeds’ explanation). Our results therefore suggest that both biased oviposition and biased survival ensure seed production, thereby stabilizing the mutualism. We further argue that biased oviposition can maintain biased survival by selecting against wasp traits to overcome fig defenses. Finally, we report evidence suggesting that F. racemosa balances seed and wasp production at the level of the tree. Because figs are probably selected to allocate equally to male and female function, a 1:1 seed:wasp ratio suggests that fig trees are in control of the mutualism.
Resumo:
The behavior of the Sun and near-Earth space during grand solar minima is not understood; however, the recent long and low minimum of the decadal-scale solar cycle gives some important clues, with implications for understanding the solar dynamo and predicting space weather conditions. The speed of the near-Earth solar wind and the strength of the interplanetary magnetic field (IMF) embedded within it can be reliably reconstructed for before the advent of spacecraft monitoring using observations of geomagnetic activity that extend back to the mid-19th century. We show that during the solar cycle minima around 1879 and 1901 the average solar wind speed was exceptionally low, implying the Earth remained within the streamer belt of slow solar wind flow for extended periods. This is consistent with a broader streamer belt, which was also a feature of the recent low minimum (2009), and yields a prediction that the low near-Earth IMF during the Maunder minimum (1640-1700), as derived from models and deduced from cosmogenic isotopes, was accompanied by a persistent and relatively constant solar wind of speed roughly half the average for the modern era.
Resumo:
This chapter explores the distinctive qualities of the Matt Smith era Doctor Who, focusing on how dramatic emphases are connected with emphases on visual style, and how this depends on the programme's production methods and technologies. Doctor Who was first made in the 1960s era of live, studio-based, multi-camera television with monochrome pictures. However, as technical innovations like colour filming, stereo sound, CGI and post-production effects technology have been routinely introduced into the programme, and now High Definition (HD) cameras, they have given Doctor Who’s creators new ways of making visually distinctive narratives. Indeed, it has been argued that since the 1980s television drama has become increasingly like cinema in its production methods and aesthetic aims. Viewers’ ability to view the programme on high-specification TV sets, and to record and repeat episodes using digital media, also encourage attention to visual style in television as much as in cinema. The chapter evaluates how these new circumstances affect what Doctor Who has become and engages with arguments that visual style has been allowed to override characterisation and story in the current Doctor Who. The chapter refers to specific episodes, and frames the analysis with reference to earlier years in Doctor Who’s long history. For example, visual spectacle using green-screen and CGI can function as a set-piece (at the opening or ending of an episode) but can also work ‘invisibly’ to render a setting realistically. Shooting on location using HD cameras provides a rich and detailed image texture, but also highlights mistakes and especially problems of lighting. The reduction of Doctor Who’s budget has led to Steven Moffat’s episodes relying less on visual extravagance, connecting back both to Russell T. Davies’s concern to show off the BBC’s investment in the series but also to reference British traditions of gritty and intimate social drama. Pressures to capitalise on Doctor Who as a branded product are the final aspect of the chapter’s analysis, where the role of Moffat as ‘showrunner’ links him to an American (not British) style of television production where the preservation of format and brand values give him unusual power over the look of the series.