120 resultados para Recent thymic emigrants
Resumo:
Temperature results from multi-decadal simulations of coupled chemistry climate models for the recent past are analyzed using multi-linear regression including a trend, solar cycle, lower stratospheric tropical wind, and volcanic aerosol terms. The climatology of the models for recent years is in good agreement with observations for the troposphere but the model results diverge from each other and from observations in the stratosphere. Overall, the models agree better with observations than in previous assessments, primarily because of corrections in the observed temperatures. The annually averaged global and polar temperature trends simulated by the models are generally in agreement with revised satellite observations and radiosonde data over much of their altitude range. In the global average, the model trends underpredict the radiosonde data slightly at the top of the observed range. Over the Antarctic some models underpredict the temperature trend in the lower stratosphere, while others overpredict the trends
Resumo:
The search for Earth-like exoplanets, orbiting in the habitable zone of stars other than our Sun and showing biological activity, is one of the most exciting and challenging quests of the present time. Nulling interferometry from space, in the thermal infrared, appears as a promising candidate technique for the task of directly observing extra-solar planets. It has been studied for about 10 years by ESA and NASA in the framework of the Darwin and TPF-I missions respectively. Nevertheless, nulling interferometry in the thermal infrared remains a technological challenge at several levels. Among them, the development of the "modal filter" function is mandatory for the filtering of the wavefronts in adequacy with the objective of rejecting the central star flux to an efficiency of about 105. Modal filtering takes benefit of the capability of single-mode waveguides to transmit a single amplitude function, to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible. The modal filter may either be based on single-mode Integrated Optics (IO) and/or Fiber Optics. In this paper, we focus on IO, and more specifically on the progress of the on-going "Integrated Optics" activity of the European Space Agency.
Resumo:
Recent laboratory observations and advances in theoretical quantum chemistry allow a reappraisal of the fundamental mechanisms that determine the water vapour self-continuum absorption throughout the infrared and millimetre wave spectral regions. By starting from a framework that partitions bimolecular interactions between water molecules into free-pair states, true bound and quasi-bound dimers, we present a critical review of recent observations, continuum models and theoretical predictions. In the near-infrared bands of the water monomer, we propose that spectral features in recent laboratory-derived self-continuum can be well explained as being due to a combination of true bound and quasi-bound dimers, when the spectrum of quasi-bound dimers is approximated as being double the broadened spectrum of the water monomer. Such a representation can explain both the wavenumber variation and the temperature dependence. Recent observations of the self-continuum absorption in the windows between these near-infrared bands indicate that widely used continuum models can underestimate the true strength by around an order of magnitude. An existing far-wing model does not appear able to explain the discrepancy, and although a dimer explanation is possible, currently available observations do not allow a compelling case to be made. In the 8–12 micron window, recent observations indicate that the modern continuum models either do not properly represent the temperature dependence, the wavelength variation, or both. The temperature dependence is suggestive of a transition from the dominance of true bound dimers at lower temperatures to quasibound dimers at higher temperatures. In the mid- and far-infrared spectral region, recent theoretical calculations indicate that true bound dimers may explain at least between 20% and 40% of the observed self-continuum. The possibility that quasi-bound dimers could cause an additional contribution of the same size is discussed. Most recent theoretical considerations agree that water dimers are likely to be the dominant contributor to the self-continuum in the mm-wave spectral range.