103 resultados para Real Electricity Markets Data
Resumo:
Purpose – Price indices for commercial real estate markets are difficult to construct because assets are heterogeneous, they are spatially dispersed and they are infrequently traded. Appraisal-based indices are one response to these problems, but may understate volatility or fail to capture turning points in a timely manner. This paper estimates “transaction linked indices” for major European markets to see whether these offer a different perspective on market performance. The paper aims to discuss these issues. Design/methodology/approach – The assessed value method is used to construct the indices. This has been recently applied to commercial real estate datasets in the USA and UK. The underlying data comprise appraisals and sale prices for assets monitored by Investment Property Databank (IPD). The indices are compared to appraisal-based series for the countries concerned for Q4 2001 to Q4 2012. Findings – Transaction linked indices show stronger growth and sharper declines over the course of the cycle, but they do not notably lead their appraisal-based counterparts. They are typically two to four times more volatile. Research limitations/implications – Only country-level indicators can be constructed in many cases owing to low trading volumes in the period studied, and this same issue prevented sample selection bias from being analysed in depth. Originality/value – Discussion of the utility of transaction-based price indicators is extended to European commercial real estate markets. The indicators offer alternative estimates of real estate market volatility that may be useful in asset allocation and risk modelling, including in a regulatory context.
Resumo:
This study investigates the determinants of cross-border capital flows into direct real estate markets. In particular, it investigates how existing institutional, regulatory and real estate specific barriers affect cross-border real estate inflows and outflows in a sample of 24 developed and emerging countries, and whether investors seek out targets with lower barriers and regulatory arbitrage. We do not find evidence of significant cross-border institutional or regulatory arbitrage in the real estate market. However, real estate market liquidity is found to be the most important driver of cross-border flows. While many of the institutional barriers included in this analysis do not appear to impact the level of real estate inflows significantly, their presence tends to suppress real estate capital outflows to other countries. Overall, easy access to financial markets, a good economic environment and transparent real estate markets may enhance real estate outflows, while returns and the macroeconomy are found to enhance domestic real estate investment.
Resumo:
A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km2 semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events.
Resumo:
he perspective European Supergrid would consist of an integrated power system network, where electricity demands from one country could be met by generation from another country. This paper makes use of a bi-linear fixed-effects model to analyse the determinants for trading electricity across borders among 34 countries connected by the European Supergrid. The key question that this paper aims to address is the extent to which the privatisation of European electricity markets has brought about higher cross-border trade of electricity. The analysis makes use of distance, price ratios, gate closure times, size of peaks and aggregate demand as standard determinants. Controlling for other standard determinants, it is concluded that privatisation in most cases led to higher power exchange and that the benefits are more significant where privatisation measures have been in place for a longer period.
Resumo:
In this paper we determine whether speculative bubbles in one region in the United States can lead bubbles to form in others. We first apply a regime-switching model to determine whether speculative bubbles existed in the U.S. regional residential real estate markets. Our findings suggest that the housing markets in five of the nine census divisions investigated were characterized by speculative bubbles. We then examine the extent to which bubbles spill over between neighboring and more distant regions, finding that the transmission of speculative bubbles and nonfundamentals between regions is multidirectional and does not depend on contiguity or distance
Resumo:
BACKGROUND: Exposure of macrophages to bacterial products such as lipopolysaccharide (LPS) results in activation of the NF-kappaB transcription factor, which orchestrates a gene expression programme that underpins the macrophage-dependent immune response. These changes include the induction or repression of a wide range of genes that regulate inflammation, cell proliferation, migration and cell survival. This process is tightly regulated and loss of control is associated with conditions such as septic shock, inflammatory diseases and cancer. To study this response, it is important to have in vitro model systems that reflect the behaviour of cells in vivo. In addition, it is necessary to understand the natural differences that can occur between individuals. In this report, we have investigated and compared the LPS response in macrophage derived cell lines and peripheral blood mononuclear cell (PBMC) derived macrophages. RESULTS: Gene expression profiles were determined following LPS treatment of THP-1 cells for 1 and 4 hours. LPS significantly induced or repressed 72 out of 465 genes selected as being known or putative NF-kappaB target genes, which exhibited 4 temporal patterns of expression. Results for 34 of these genes, including several genes not previously identified as LPS target genes, were validated using real time PCR. A high correlation between microarray and real time PCR data was found. Significantly, the LPS induced expression profile of THP-1 cells, as determined using real time PCR, was found to be very similar to that of human PBMC derived macrophages. Interestingly, some differences were observed in the LPS response between the two donor PBMC macrophage populations. Surprisingly, we found that the LPS response in U937 cells was dramatically different to both THP-1 and PBMC derived macrophages. CONCLUSION: This study revealed a dynamic and diverse transcriptional response to LPS in macrophages, involving both the induction and repression of gene expression in a time dependent manner. Moreover, we demonstrated that the LPS induced transcriptional response in the THP-1 cell line is very similar to primary PBMC derived macrophages. Therefore, THP-1 cells represent a good model system for studying the mechanisms of LPS and NF-kappaB dependent gene expression.
Resumo:
The content of this paper is a snapshot of a current project looking at producing a real-time sensor-based building assessment tool, and a system that personalises workspaces using multi-agent technology. Both systems derive physical environment information from a wireless sensor network that allows clients to subscribe to real-time sensed data. The principal ideologies behind this project are energy efficiency and well-being of occupants; in the context of leveraging the current state-of-the-art in agent technology, wireless sensor networks and building assessment systems to enable the optimisation and assessment of buildings. Participants of this project are from both industry (construction and research) and academia.
Resumo:
In this paper we consider the possibility of using an artificial neural network to accurately identify the onset of Parkinson’s Disease tremors in human subjects. Data for the network is obtained by means of deep brain implantation in the human brain. Results presented have been obtained from a practical study (i.e. real not simulated data) but should be regarded as initial trials to be discussed further. It can be seen that a tuned artificial neural network can act as an extremely effective predictor in these circumstances.
Resumo:
The content of this paper is a snapshot of a current project looking at producing a real-time sensor-based building assessment tool, and a system that personalises work-spaces using multi-agent technology. Both systems derive physical environment information from a wireless sensor network that allows clients to subscribe to real-time sensed data. The principal ideologies behind this project are energy efficiency and well-being of occupants; in the context of leveraging the current state-of-the-art in agent technology, wireless sensor networks and building assessment systems to enable the optimisation and assessment of buildings. Participants of this project are from both industry (construction and research) and academia.
Resumo:
Many natural and technological applications generate time ordered sequences of networks, defined over a fixed set of nodes; for example time-stamped information about ‘who phoned who’ or ‘who came into contact with who’ arise naturally in studies of communication and the spread of disease. Concepts and algorithms for static networks do not immediately carry through to this dynamic setting. For example, suppose A and B interact in the morning, and then B and C interact in the afternoon. Information, or disease, may then pass from A to C, but not vice versa. This subtlety is lost if we simply summarize using the daily aggregate network given by the chain A-B-C. However, using a natural definition of a walk on an evolving network, we show that classic centrality measures from the static setting can be extended in a computationally convenient manner. In particular, communicability indices can be computed to summarize the ability of each node to broadcast and receive information. The computations involve basic operations in linear algebra, and the asymmetry caused by time’s arrow is captured naturally through the non-mutativity of matrix-matrix multiplication. Illustrative examples are given for both synthetic and real-world communication data sets. We also discuss the use of the new centrality measures for real-time monitoring and prediction.
Resumo:
Despite continuing developments in information technology and the growing economic significance of the emerging Eastern European, South American and Asian economies, international financial activity remains strongly concentrated in a relatively small number of international financial centres. That concentration of financial activity requires a critical mass of office occupation and creates demand for high specification, high cost space. The demand for that space is increasingly linked to the fortunes of global capital markets. That linkage has been emphasised by developments in real estate markets, notably the development of global real estate investment, innovation in property investment vehicles and the growth of debt securitisation. The resultant interlinking of occupier, asset, debt and development markets within and across global financial centres is a source of potential volatility and risk. The paper sets out a broad conceptual model of the linkages and their implications for systemic market risk and presents preliminary empirical results that provide support for the model proposed.
Resumo:
One of the most vexing issues for analysts and managers of property companies across Europe has been the existence and persistence of deviations of Net Asset Values of property companies from their market capitalisation. The issue has clear links to similar discounts and premiums in closed-end funds. The closed end fund puzzle is regarded as an important unsolved problem in financial economics undermining theories of market efficiency and the Law of One Price. Consequently, it has generated a huge body of research. Although it can be tempting to focus on the particular inefficiencies of real estate markets in attempting to explain deviations from NAV, the closed end fund discount puzzle indicates that divergences between underlying asset values and market capitalisation are not a ‘pure’ real estate phenomenon. When examining potential explanations, two recurring factors stand out in the closed end fund literature as often undermining the economic rationale for a discount – the existence of premiums and cross-sectional and periodic fluctuations in the level of discount/premium. These need to be borne in mind when considering potential explanations for real estate markets. There are two approaches to investigating the discount to net asset value in closed-end funds: the ‘rational’ approach and the ‘noise trader’ or ‘sentiment’ approach. The ‘rational’ approach hypothesizes the discount to net asset value as being the result of company specific factors relating to such factors as management quality, tax liability and the type of stocks held by the fund. Despite the intuitive appeal of the ‘rational’ approach to closed-end fund discounts the studies have not successfully explained the variance in closed-end fund discounts or why the discount to net asset value in closed-end funds varies so much over time. The variation over time in the average sector discount is not only a feature of closed-end funds but also property companies. This paper analyses changes in the deviations from NAV for UK property companies between 2000 and 2003. The paper present a new way to study the phenomenon ‘cleaning’ the gearing effect by introducing a new way of calculating the discount itself. We call it “ungeared discount”. It is calculated by assuming that a firm issues new equity to repurchase outstanding debt without any variation on asset side. In this way discount does not depend on an accounting effect and the analysis should better explain the effect of other independent variables.
Resumo:
A new generation of advanced surveillance systems is being conceived as a collection of multi-sensor components such as video, audio and mobile robots interacting in a cooperating manner to enhance situation awareness capabilities to assist surveillance personnel. The prominent issues that these systems face are: the improvement of existing intelligent video surveillance systems, the inclusion of wireless networks, the use of low power sensors, the design architecture, the communication between different components, the fusion of data emerging from different type of sensors, the location of personnel (providers and consumers) and the scalability of the system. This paper focuses on the aspects pertaining to real-time distributed architecture and scalability. For example, to meet real-time requirements, these systems need to process data streams in concurrent environments, designed by taking into account scheduling and synchronisation. The paper proposes a framework for the design of visual surveillance systems based on components derived from the principles of Real Time Networks/Data Oriented Requirements Implementation Scheme (RTN/DORIS). It also proposes the implementation of these components using the well-known middleware technology Common Object Request Broker Architecture (CORBA). Results using this architecture for video surveillance are presented through an implemented prototype.
Resumo:
The plethora, and mass take up, of digital communication tech- nologies has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the ex- istence or otherwise of certain infinite products and series involving age dependent model parameters. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.
Resumo:
We propose and analyse a class of evolving network models suitable for describing a dynamic topological structure. Applications include telecommunication, on-line social behaviour and information processing in neuroscience. We model the evolving network as a discrete time Markov chain, and study a very general framework where, conditioned on the current state, edges appear or disappear independently at the next timestep. We show how to exploit symmetries in the microscopic, localized rules in order to obtain conjugate classes of random graphs that simplify analysis and calibration of a model. Further, we develop a mean field theory for describing network evolution. For a simple but realistic scenario incorporating the triadic closure effect that has been empirically observed by social scientists (friends of friends tend to become friends), the mean field theory predicts bistable dynamics, and computational results confirm this prediction. We also discuss the calibration issue for a set of real cell phone data, and find support for a stratified model, where individuals are assigned to one of two distinct groups having different within-group and across-group dynamics.