51 resultados para Radio wave propagation
Resumo:
A version of the Canadian Middle Atmosphere Model (CMAM) that is nudged toward reanalysis data up to 1 hPa is used to examine the impacts of parameterized orographic and non-orographic gravity wave drag (OGWD and NGWD) on the zonal-mean circulation of the mesosphere during the extended northern winters of 2006 and 2009 when there were two large stratospheric sudden warmings. The simulations are compared to Aura Microwave Limb Sounder (MLS) observations of mesospheric temperature, carbon monoxide (CO) and derived zonal winds. The control simulation, which uses both OGWD and NGWD, is shown to be in good agreement with MLS. The impacts of OGWD and NGWD are assessed using simulations in which those sources of wave drag are removed. In the absence of OGWD the mesospheric zonal winds in the months preceding the warmings are too strong, causing increased mesospheric NGWD, which drives excessive downwelling, resulting in overly large lower mesospheric values of CO prior to the warming. NGWD is found to be most important following the warmings when the underlying westerlies are too weak to allow much vertical propagation of the orographic gravity waves to the mesosphere. NGWD is primarily responsible for driving the circulation that results in the descent of CO from the thermosphere following the warmings. Zonal mean mesospheric winds and temperatures in all simulations are shown to be strongly constrained by (i.e. slaved to) the stratosphere. Finally, it is demonstrated that the responses to OGWD and NGWD are non-additive due to their dependence and influence on the background winds and temperatures.
Resumo:
The convectively active part of the Madden-Julian Oscillation (MJO) propagates eastward through the warm pool, from the Indian Ocean through the Maritime Continent (the Indonesian archipelago) to the western Pacific. The Maritime Continent's complex topography means the exact nature of the MJO propagation through this region is unclear. Model simulations of the MJO are often poor over the region, leading to local errors in latent heat release and global errors in medium-range weather prediction and climate simulation. Using 14 northern winters of TRMM satellite data it is shown that, where the mean diurnal cycle of precipitation is strong, 80% of the MJO precipitation signal in the Maritime Continent is accounted for by changes in the amplitude of the diurnal cycle. Additionally, the relationship between outgoing long-wave radiation (OLR) and precipitation is weakened here, such that OLR is no longer a reliable proxy for precipitation. The canonical view of the MJO as the smooth eastward propagation of a large-scale precipitation envelope also breaks down over the islands of the Maritime Continent. Instead, a vanguard of precipitation (anomalies of 2.5 mm day^-1 over 10^6 km^2) jumps ahead of the main body by approximately 6 days or 2000 km. Hence, there can be enhanced precipitation over Sumatra, Borneo or New Guinea when the large-scale MJO envelope over the surrounding ocean is one of suppressed precipitation. This behaviour can be accommodated into existing MJO theories. Frictional and topographic moisture convergence and relatively clear skies ahead of the main convective envelope combine with the low thermal inertia of the islands, to allow a rapid response in the diurnal cycle which rectifies onto the lower-frequency MJO. Hence, accurate representations of the diurnal cycle and its scale interaction appear to be necessary for models to simulate the MJO successfully.
Resumo:
Observations of the amplitudes and Doppler shifts of received HF radio waves are compared with model predictions made using a two-dimensional ray-tracing program. The signals are propagated over a sub-auroral path, which is shown to lie along the latitudes of the mid-latitude trough at times of low geomagnetic activity. Generalizing the predictions to include a simple model of the trough in the density and height of the F2 peak enables the explanation of the anomalous observed diurnal variations. The behavior of received amplitude, Doppler shift, and signal-to-noise ratio as a function of the Kp index value, the time of day, and the season (in 17 months of continuous recording) is found to agree closely with that predicted using the statistical position of the trough as deduced from 8 years of Alouette satellite soundings. The variation in the times of the observation of large signal amplitudes with the Kp value and the complete absence of such amplitudes when it exceeds 2.75 are two features that implicate the trough in these effects.
Resumo:
The propagation of 7.335 MHz, c.w. signals over a 5212 km sub-auroral, west-east path is studied. Measurements and semi-empirical predictions are made of the amplitude distributions and Doppler shifts of the received signals. The observed amplitude distribution is fitted with one produced by a numerical fading model, yielding the power losses suffered by the signals during propagation via the predominating modes. The signals are found to suffer exceptionally low losses at certain local times under geomagnetically quiet conditions. The mid-latitude trough in the F2 peak ionization density is predicted by a statistical model to be at the latitudes of this path at these times and at low Kp values. A sharp cut-off in low-power losses at a mean Kp of 2.75 strongly implicates the trough in the propagation of these signals. The Doppler shifts observed at these times cannot be explained by a simple ray-tracing model. It is shown however, that a simple extension of this model to allow for the trough can reproduce the form of the observed diurnal variation.
Resumo:
This paper aims to identify the circulation associated with Easterly Wave Disturbances (EWDs) that propagate toward the Eastern Northeast Brazil (ENEB) and their impact on the rainfall over ENEB during 2006 and 2007 rainy seasons (April–July). The EWDs identification and trajectory are analyzed using an automatic tracking technique (TracKH). The EWDs circulation patterns and their main features were obtained using the composite technique. To evaluate the TracKH efficiency, a validation was done by comparing the EWDs number tracked against observed cases obtained from an observational analysis. The mean characteristics of EWDs are 5.5-day period, propagation speed of ~9.5 m·s−1, and a 4500 km wavelength. A synoptic analysis shows that between days −2 d and 0 d, the low level winds presented cyclonic relative vorticity and convergence anomalies both in 2006 and 2007. The EWDs signals are strongest at low levels. The EWDs propagation is associated with relative humidity and precipitation positive anomalies and OLR and omega negative anomalies. The EWDs tracks are seen over all ENEB and their lysis occurs between the ENEB and marginally inside the continent. The tracking captured 71% of EWDs in all periods, indicating that an objective analysis is a promising method for EWDs detection.
Resumo:
The general 1-D theory of waves propagating on a zonally varying flow is developed from basic wave theory, and equations are derived for the variation of wavenumber and energy along ray paths. Different categories of behaviour are found, depending on the sign of the group velocity (cg) and a wave property, B. For B positive the wave energy and the wave number vary in the same sense, with maxima in relative easterlies or westerlies, depending on the sign of cg. Also the wave accumulation of Webster and Chang (1988) occurs where cg goes to zero. However for B negative they behave in opposite senses and wave accumulation does not occur. The zonal propagation of the gravest equatorial waves is analysed in detail using the theory. For non-dispersive Kelvin waves, B reduces to 2, and analytic solution is possible. B is positive for all the waves considered, except for the westward moving mixed Rossby-gravity (WMRG) wave which can have negative as well as positive B. Comparison is made between the observed climatologies of the individual equatorial waves and the result of pure propagation on the climatological upper tropospheric flow. The Kelvin wave distribution is in remarkable agreement, considering the approximations made. Some aspects of the WMRG and Rossby wave distributions are also in qualitative agreement. However the observed maxima in these waves in the winter westerlies in the eastern Pacific and Atlantic are not consistent with the theory. This is consistent with the importance of the sources of equatorial waves in these westerly duct regions due to higher latitude wave activity.