73 resultados para ROTATING SPIRALS
Resumo:
We explore the influence of a rotating collector on the internal structure of poly(ε-caprolactone) fibres electrospun from a solution in dichloroethane. We find that above a threshold collector speed, the mean fibre diameter reduces as the speed increases and the fibres are further extended. Small-angle and wide-angle X-ray scattering techniques show a preferred orientation of the lamellar crystals normal to the fibre axis which increases with collector speed to a maximum and then reduces. We have separated out the processes of fibre alignment on the collector and the orientation of crystals within the fibres. There are several stages to this behaviour which correspond to the situations (a) where the collector speed is slower than the fibre spinning rate, (b) the fibre is mechanically extended by the rotating collector and (c) where the deformation leads to fibre fracture. The mechanical deformation leads to a development of preferred orientation with extension which is similar to the prediction of the pseudo-affine deformation model and suggests that the deformation takes place during the spinning process after the crystals have formed.
Resumo:
Mannitol is a polymorphic pharmaceutical excipient, which commonly exists in three forms: alpha, beta and delta. Each polymorph has a needle-like morphology, which can give preferred orientation effects when analysed by X-ray powder diffractometry (XRPD) thus providing difficulties for quantitative XRPD assessments. The occurrence of preferred orientation may be demonstrated by sample rotation and the consequent effects on X-ray data can be minimised by reducing the particle size. Using two particle size ranges (less than 125 and 125–500�microns), binary mixtures of beta and delta mannitol were prepared and the delta component was quantified. Samples were assayed in either a static or rotating sampling accessory. Rotation and reducing the particle size range to less than�125 microns halved the limits of detection and quantitation to 1 and 3.6%, respectively. Numerous potential sources of assay errors were investigated; sample packing and mixing errors contributed the greatest source of variation. However, the rotation of samples for both particle size ranges reduced the majority of assay errors examined. This study shows that coupling sample rotation with a particle size reduction minimises preferred orientation effects on assay accuracy, allowing discrimination of two very similar polymorphs at around the 1% level
Resumo:
We propose a new satellite mission to deliver high quality measurements of upper air water vapour. The concept centres around a LiDAR in limb sounding by occultation geometry, designed to operate as a very long path system for differential absorption measurements. We present a preliminary performance analysis with a system sized to send 75 mJ pulses at 25 Hz at four wavelengths close to 935 nm, to up to 5 microsatellites in a counter-rotating orbit, carrying retroreflectors characterized by a reflected beam divergence of roughly twice the emitted laser beam divergence of 15 µrad. This provides water vapour profiles with a vertical sampling of 110 m; preliminary calculations suggest that the system could detect concentrations of less than 5 ppm. A secondary payload of a fairly conventional medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. The total weight and power of the system are estimated at 3 tons and 2,700 W respectively. This novel concept presents significant challenges, including the performance of the lasers in space, the tracking between the main spacecraft and the retroreflectors, the refractive effects of turbulence, and the design of the telescopes to achieve a high signal-to-noise ratio for the high precision measurements. The mission concept was conceived at the Alpbach Summer School 2010.
Resumo:
To study the thermal effects on airflow in a street canyon under real heating conditions (due to diurnal solar radiation), a one-way static approach combining an urban canopy model and CFD is proposed in this paper. An urban canopy model was developed to calculate the individual temperatures of surfaces in the street canyon. The calculated surface temperature may be used as a thermal boundary for CFD simulation. The reliability of this model was validated against a field experiment in Harbin, China. Using the coupling calculation method, the wind flow and air exchange process inside an idealized street canyon was studied. The simulation results show that the thermal effect has significant impacts on the transfer process in the street canyon, especially when the approaching wind is weak. Under a real diurnal thermal forcing, the flow structure within the street canyon changes from one primary vortex to two counter-rotating vortices. The change of transfer process, induced by the buoyancy force, was determined by the thermal condition of all surfaces rather than a single one. Key words: thermal effect, street canyon, numerical simulation, transfer process, diurnal heating.
Resumo:
The impact of the variation of the Coriolis parameter f on the drag exerted by internal Rossby-gravity waves on elliptical mountains is evaluated using linear theory, assuming constant wind and static stability and a beta-plane approximation. Previous calculations of inertia-gravity wave drag are thus extended in an attempt to establish a connection with existing studies on planetary wave drag, developed primarily for fluids topped by a rigid lid. It is found that the internal wave drag for zonal westerly flow strongly increases relative to that given by the calculation where f is assumed to be a constant, particularly at high latitudes and for mountains aligned meridionally. Drag increases with mountain width for sufficiently wide mountains, reaching values much larger than those valid in the non-rotating limit. This occurs because the drag receives contributions from a low wavenumber range, controlled by the beta effect, which accounts for the drag amplification found here. This drag amplification is shown to be considerable for idealized analogues of real mountain ranges, such as the Himalayas and the Rocky mountains, and comparable to the barotropic Rossby wave drag addressed in previous studies.
Resumo:
Sampling strategies for monitoring the status and trends in wildlife populations are often determined before the first survey is undertaken. However, there may be little information about the distribution of the population and so the sample design may be inefficient. Through time, as data are collected, more information about the distribution of animals in the survey region is obtained but it can be difficult to incorporate this information in the survey design. This paper introduces a framework for monitoring motile wildlife populations within which the design of future surveys can be adapted using data from past surveys whilst ensuring consistency in design-based estimates of status and trends through time. In each survey, part of the sample is selected from the previous survey sample using simple random sampling. The rest is selected with inclusion probability proportional to predicted abundance. Abundance is predicted using a model constructed from previous survey data and covariates for the whole survey region. Unbiased design-based estimators of status and trends and their variances are derived from two-phase sampling theory. Simulations over the short and long-term indicate that in general more precise estimates of status and trends are obtained using this mixed strategy than a strategy in which all of the sample is retained or all selected with probability proportional to predicted abundance. Furthermore the mixed strategy is robust to poor predictions of abundance. Estimates of status are more precise than those obtained from a rotating panel design.
Resumo:
It is shown how a renormalization technique, which is a variant of classical Krylov–Bogolyubov–Mitropol’skii averaging, can be used to obtain slow evolution equations for the vortical and inertia–gravity wave components of the dynamics in a rotating flow. The evolution equations for each component are obtained to second order in the Rossby number, and the nature of the coupling between the two is analyzed carefully. It is also shown how classical balance models such as quasigeostrophic dynamics and its second-order extension appear naturally as a special case of this renormalized system, thereby providing a rigorous basis for the slaving approach where only the fast variables are expanded. It is well known that these balance models correspond to a hypothetical slow manifold of the parent system; the method herein allows the determination of the dynamics in the neighborhood of such solutions. As a concrete illustration, a simple weak-wave model is used, although the method readily applies to more complex rotating fluid models such as the shallow-water, Boussinesq, primitive, and 3D Euler equations.
Resumo:
During a period of heliospheric disturbance in 2007-9 associated with a co-rotating interaction region (CIR), a characteristic periodic variation becomes apparent in neutron monitor data. This variation is phase locked to periodic heliospheric current sheet crossings. Phase-locked electrical variations are also seen in the terrestrial lower atmosphere in the southern UK, including an increase in the vertical conduction current density of fair weather atmospheric electricity during increases in the neutron monitor count rate and energetic proton count rates measured by spacecraft. At the same time as the conduction current increases, changes in the cloud microphysical properties lead to an increase in the detected height of the cloud base at Lerwick Observatory, Shetland, with associated changes in surface meteorological quantities. As electrification is expected at the base of layer clouds, which can influence droplet properties, these observations of phase-locked thermodynamic, cloud, atmospheric electricity and solar sector changes are not inconsistent with a heliospheric disturbance driving lower troposphere changes.
Resumo:
The non-quadratic conservation laws of the two-dimensional Euler equations are used to show that the gravest modes in a doubly-periodic domain with aspect ratio L = 1 are stable up to translations (or structurally stable) for finite-amplitude disturbances. This extends a previous result based on conservation of energy and enstrophy alone. When L 1, a saturation bound is established for the mode with wavenumber |k| = L −1 (the next-gravest mode), which is linearly unstable. The method is applied to prove nonlinear structural stability of planetary wave two on a rotating sphere.
Resumo:
The slow advective-timescale dynamics of the atmosphere and oceans is referred to as balanced dynamics. An extensive body of theory for disturbances to basic flows exists for the quasi-geostrophic (QG) model of balanced dynamics, based on wave-activity invariants and nonlinear stability theorems associated with exact symmetry-based conservation laws. In attempting to extend this theory to the semi-geostrophic (SG) model of balanced dynamics, Kushner & Shepherd discovered lateral boundary contributions to the SG wave-activity invariants which are not present in the QG theory, and which affect the stability theorems. However, because of technical difficulties associated with the SG model, the analysis of Kushner & Shepherd was not fully nonlinear. This paper examines the issue of lateral boundary contributions to wave-activity invariants for balanced dynamics in the context of Salmon's nearly geostrophic model of rotating shallow-water flow. Salmon's model has certain similarities with the SG model, but also has important differences that allow the present analysis to be carried to finite amplitude. In the process, the way in which constraints produce boundary contributions to wave-activity invariants, and additional conditions in the associated stability theorems, is clarified. It is shown that Salmon's model possesses two kinds of stability theorems: an analogue of Ripa's small-amplitude stability theorem for shallow-water flow, and a finite-amplitude analogue of Kushner & Shepherd's SG stability theorem in which the ‘subsonic’ condition of Ripa's theorem is replaced by a condition that the flow be cyclonic along lateral boundaries. As with the SG theorem, this last condition has a simple physical interpretation involving the coastal Kelvin waves that exist in both models. Salmon's model has recently emerged as an important prototype for constrained Hamiltonian balanced models. The extent to which the present analysis applies to this general class of models is discussed.
Resumo:
A reduced dynamical model is derived which describes the interaction of weak inertia–gravity waves with nonlinear vortical motion in the context of rotating shallow–water flow. The formal scaling assumptions are (i) that there is a separation in timescales between the vortical motion and the inertia–gravity waves, and (ii) that the divergence is weak compared to the vorticity. The model is Hamiltonian, and possesses conservation laws analogous to those in the shallow–water equations. Unlike the shallow–water equations, the energy invariant is quadratic. Nonlinear stability theorems are derived for this system, and its linear eigenvalue properties are investigated in the context of some simple basic flows.
Resumo:
We consider the problem of constructing balance dynamics for rapidly rotating fluid systems. It is argued that the conventional Rossby number expansion—namely expanding all variables in a series in Rossby number—is secular for all but the simplest flows. In particular, the higher-order terms in the expansion grow exponentially on average, and for moderate values of the Rossby number the expansion is, at best, useful only for times of the order of the doubling times of the instabilities of the underlying quasi-geostrophic dynamics. Similar arguments apply in a wide class of problems involving a small parameter and sufficiently complex zeroth-order dynamics. A modified procedure is proposed which involves expanding only the fast modes of the system; this is equivalent to an asymptotic approximation of the slaving relation that relates the fast modes to the slow modes. The procedure is systematic and thus capable, at least in principle, of being carried to any order—unlike procedures based on truncations. We apply the procedure to construct higher-order balance approximations of the shallow-water equations. At the lowest order quasi-geostrophy emerges. At the next order the system incorporates gradient-wind balance, although the balance relations themselves involve only linear inversions and hence are easily applied. There is a large class of reduced systems associated with various choices for the slow variables, but the simplest ones appear to be those based on potential vorticity.
Resumo:
Disturbances of arbitrary amplitude are superposed on a basic flow which is assumed to be steady and either (a) two-dimensional, homogeneous, and incompressible (rotating or non-rotating) or (b) stably stratified and quasi-geostrophic. Flow over shallow topography is allowed in either case. The basic flow, as well as the disturbance, is assumed to be subject neither to external forcing nor to dissipative processes like viscosity. An exact, local ‘wave-activity conservation theorem’ is derived in which the density A and flux F are second-order ‘wave properties’ or ‘disturbance properties’, meaning that they are O(a2) in magnitude as disturbance amplitude a [rightward arrow] 0, and that they are evaluable correct to O(a2) from linear theory, to O(a3) from second-order theory, and so on to higher orders in a. For a disturbance in the form of a single, slowly varying, non-stationary Rossby wavetrain, $\overline{F}/\overline{A}$ reduces approximately to the Rossby-wave group velocity, where (${}^{-}$) is an appropriate averaging operator. F and A have the formal appearance of Eulerian quantities, but generally involve a multivalued function the correct branch of which requires a certain amount of Lagrangian information for its determination. It is shown that, in a certain sense, the construction of conservable, quasi-Eulerian wave properties like A is unique and that the multivaluedness is inescapable in general. The connection with the concepts of pseudoenergy (quasi-energy), pseudomomentum (quasi-momentum), and ‘Eliassen-Palm wave activity’ is noted. The relationship of this and similar conservation theorems to dynamical fundamentals and to Arnol'd's nonlinear stability theorems is discussed in the light of recent advances in Hamiltonian dynamics. These show where such conservation theorems come from and how to construct them in other cases. An elementary proof of the Hamiltonian structure of two-dimensional Eulerian vortex dynamics is put on record, with explicit attention to the boundary conditions. The connection between Arnol'd's second stability theorem and the suppression of shear and self-tuning resonant instabilities by boundary constraints is discussed, and a finite-amplitude counterpart to Rayleigh's inflection-point theorem noted
Resumo:
The concept of slow vortical dynamics and its role in theoretical understanding is central to geophysical fluid dynamics. It leads, for example, to “potential vorticity thinking” (Hoskins et al. 1985). Mathematically, one imagines an invariant manifold within the phase space of solutions, called the slow manifold (Leith 1980; Lorenz 1980), to which the dynamics are constrained. Whether this slow manifold truly exists has been a major subject of inquiry over the past 20 years. It has become clear that an exact slow manifold is an exceptional case, restricted to steady or perhaps temporally periodic flows (Warn 1997). Thus the concept of a “fuzzy slow manifold” (Warn and Ménard 1986) has been suggested. The idea is that nearly slow dynamics will occur in a stochastic layer about the putative slow manifold. The natural question then is, how thick is this layer? In a recent paper, Ford et al. (2000) argue that Lighthill emission—the spontaneous emission of freely propagating acoustic waves by unsteady vortical flows—is applicable to the problem of balance, with the Mach number Ma replaced by the Froude number F, and that it is a fundamental mechanism for this fuzziness. They consider the rotating shallow-water equations and find emission of inertia–gravity waves at O(F2). This is rather surprising at first sight, because several studies of balanced dynamics with the rotating shallow-water equations have gone beyond second order in F, and found only an exponentially small unbalanced component (Warn and Ménard 1986; Lorenz and Krishnamurthy 1987; Bokhove and Shepherd 1996; Wirosoetisno and Shepherd 2000). We have no technical objection to the analysis of Ford et al. (2000), but wish to point out that it depends crucially on R 1, where R is the Rossby number. This condition requires the ratio of the characteristic length scale of the flow L to the Rossby deformation radius LR to go to zero in the limit F → 0. This is the low Froude number scaling of Charney (1963), which, while originally designed for the Tropics, has been argued to be also relevant to mesoscale dynamics (Riley et al. 1981). If L/LR is fixed, however, then F → 0 implies R → 0, which is the standard quasigeostrophic scaling of Charney (1948; see, e.g., Pedlosky 1987). In this limit there is reason to expect the fuzziness of the slow manifold to be “exponentially thin,” and balance to be much more accurate than is consistent with (algebraic) Lighthill emission.
Resumo:
We study the degree to which Kraichnan–Leith–Batchelor (KLB) phenomenology describes two-dimensional energy cascades in α turbulence, governed by ∂θ/∂t+J(ψ,θ)=ν∇2θ+f, where θ=(−Δ)α/2ψ is generalized vorticity, and ψ^(k)=k−αθ^(k) in Fourier space. These models differ in spectral non-locality, and include surface quasigeostrophic flow (α=1), regular two-dimensional flow (α=2) and rotating shallow flow (α=3), which is the isotropic limit of a mantle convection model. We re-examine arguments for dual inverse energy and direct enstrophy cascades, including Fjørtoft analysis, which we extend to general α, and point out their limitations. Using an α-dependent eddy-damped quasinormal Markovian (EDQNM) closure, we seek self-similar inertial range solutions and study their characteristics. Our present focus is not on coherent structures, which the EDQNM filters out, but on any self-similar and approximately Gaussian turbulent component that may exist in the flow and be described by KLB phenomenology. For this, the EDQNM is an appropriate tool. Non-local triads contribute increasingly to the energy flux as α increases. More importantly, the energy cascade is downscale in the self-similar inertial range for 2.5<α<10. At α=2.5 and α=10, the KLB spectra correspond, respectively, to enstrophy and energy equipartition, and the triad energy transfers and flux vanish identically. Eddy turnover time and strain rate arguments suggest the inverse energy cascade should obey KLB phenomenology and be self-similar for α<4. However, downscale energy flux in the EDQNM self-similar inertial range for α>2.5 leads us to predict that any inverse cascade for α≥2.5 will not exhibit KLB phenomenology, and specifically the KLB energy spectrum. Numerical simulations confirm this: the inverse cascade energy spectrum for α≥2.5 is significantly steeper than the KLB prediction, while for α<2.5 we obtain the KLB spectrum.