53 resultados para REAL-BUSINESS-CYCLE
Resumo:
The performance of real estate investment markets is difficult to monitor because the constituent assets are heterogeneous, are traded infrequently and do not trade through a central exchange in which prices can be observed. To address this, appraisal based indices have been developed that use the records of owners for whom buildings are regularly re-valued. These indices provide a practical solution to the measurement problem, but have been criticised for understating volatility and not capturing market turning points in a timely manner. This paper evaluates alternative ‘Transaction Linked Indices’ that are estimated using an extension of the hedonic method for index construction and with Investment Property Databank data. The two types of indices are compared over Q4 2001 to Q4 2012 in order to examine whether movements in these indices are consistent. The Transaction Linked Indices show stronger growth and sharper declines than their appraisal based counterparts over the course of the cycle in different European markets and they are typically two to four times more volatile. However, they have some limitations; for instance, only country level indicators can be published in many cases owing to low trading volumes in the period studied.
Resumo:
Real-time estimates of output gaps and inflation gaps differ from the values that are obtained using data available long after the event. Part of the problem is that the data on which the real-time estimates are based is subsequently revised. We show that vector-autoregressive models of data vintages provide forecasts of post-revision values of future observations and of already-released observations capable of improving estimates of output and inflation gaps in real time. Our findings indicate that annual revisions to output and inflation data are in part predictable based on their past vintages.
Resumo:
The paper analyses the evolving corporate real estate supply chain and the interaction of this evolution with emerging business models in the serviced office sector. An enhanced model of the corporate real estate portfolio is first presented incorporating vacant, alienated and transitory space. It is argued that the serviced office sector has evolved in response to an increasingly diverse corporate real estate portfolio. For the peripheral corporate real estate portfolio, the core serviced workspace product provides the ability to rapidly acquire high-quality workspace and associated support services on very flexible bases. Whilst it is arguably a beta product, the core workspace offer is now being augmented by managed office or back-to-back leases which enables clients to complement the advantages of serviced offices with a wider choice of premises. Joint venture business models are aligned with solutions to problems of vacant space.
Resumo:
Information technology has become heavily embedded in business operations. As business needs change over time, IT applications are expected to continue providing required support. Whether the existing IT applications are still fit for the business purpose they were intended or new IT applications should be introduced, is a strategic decision for business, IT and business-aligned IT. In this paper, we present a method which aims to analyse business functions and IT roles, and to evaluate business-aligned IT from both social and technical perspectives. The method introduces a set of techniques that systematically supports the evaluation of the existing IT applications in relation to their technical capabilities for maximising business value. Furthermore, we discuss the evaluation process and results which are illustrated and validated through a real-life case study of a UK borough council, and followed by discussion on implications for researchers and practitioners.
Resumo:
Satellite-based (e.g., Synthetic Aperture Radar [SAR]) water level observations (WLOs) of the floodplain can be sequentially assimilated into a hydrodynamic model to decrease forecast uncertainty. This has the potential to keep the forecast on track, so providing an Earth Observation (EO) based flood forecast system. However, the operational applicability of such a system for floods developed over river networks requires further testing. One of the promising techniques for assimilation in this field is the family of ensemble Kalman (EnKF) filters. These filters use a limited-size ensemble representation of the forecast error covariance matrix. This representation tends to develop spurious correlations as the forecast-assimilation cycle proceeds, which is a further complication for dealing with floods in either urban areas or river junctions in rural environments. Here we evaluate the assimilation of WLOs obtained from a sequence of real SAR overpasses (the X-band COSMO-Skymed constellation) in a case study. We show that a direct application of a global Ensemble Transform Kalman Filter (ETKF) suffers from filter divergence caused by spurious correlations. However, a spatially-based filter localization provides a substantial moderation in the development of the forecast error covariance matrix, directly improving the forecast and also making it possible to further benefit from a simultaneous online inflow error estimation and correction. Additionally, we propose and evaluate a novel along-network metric for filter localization, which is physically-meaningful for the flood over a network problem. Using this metric, we further evaluate the simultaneous estimation of channel friction and spatially-variable channel bathymetry, for which the filter seems able to converge simultaneously to sensible values. Results also indicate that friction is a second order effect in flood inundation models applied to gradually varied flow in large rivers. The study is not conclusive regarding whether in an operational situation the simultaneous estimation of friction and bathymetry helps the current forecast. Overall, the results indicate the feasibility of stand-alone EO-based operational flood forecasting.
Resumo:
Model-based estimates of future uncertainty are generally based on the in-sample fit of the model, as when Box-Jenkins prediction intervals are calculated. However, this approach will generate biased uncertainty estimates in real time when there are data revisions. A simple remedy is suggested, and used to generate more accurate prediction intervals for 25 macroeconomic variables, in line with the theory. A simulation study based on an empirically-estimated model of data revisions for US output growth is used to investigate small-sample properties.
Can institutional investors bias real estate portfolio appraisals? Evidence from the market downturn
Resumo:
This paper investigates the extent to which institutional investors may have influenced independent real estate appraisals during the financial crisis. A conceptual model of the determinants of client influence on real estate appraisals is proposed. It is suggested that the extent of clients’ ability and willingness to bias appraisal outputs is contingent upon market and regulatory environments (ethical norms and legal and institutional frameworks), the salience of the appraisal(s) to the client, financial incentives for the appraiser to respond to client pressure, organisational culture, the level of moral reasoning of both individual clients and appraisers, client knowledge and the degree of appraisal uncertainty. The potential of client influence to bias ostensibly independent real estate appraisals is examined using the opportunity afforded by the market downturn commencing in 2007 in the UK. During the market turbulence at the end of 2007, the motivations of different types of owners to bias appraisals diverged clearly and temporarily provided a unique opportunity to assess potential appraisal bias. We use appraisal-based performance data for individual real estate assets to test whether there were significant ownership effects on performance during this period. The results support the hypothesis that real estate appraisals in this period reflected the differing needs of clients.
Resumo:
Past research has documented a substitution effect between real earnings management (RM) and accrual-based earnings management (AM), depending on relative costs. This study contributes to this research by examining whether levels of (and changes in) financial leverage have an impact on this empirically documented trade-off. We hypothesise that in the presence of high leverage, firms that engage in earnings manipulation tactics will exhibit a preference for RM due to a lower possibility—and subsequent costs—of getting caught. We show that leverage levels and increases positively and significantly affect upward RM, with no significant effect on income-increasing AM, while our findings point towards a complementarity effect between unexpected levels of RM and AM for firms with very high leverage levels and changes. This is interpreted as an indication that high leverage could attract heavy outsider scrutiny, making it necessary for firms to use both forms of earnings management in order to achieve earnings targets. Furthermore, we document that equity investors exhibit a significantly stronger penalising reaction to AM vs. RM, indicating that leverage-induced RM is not as easily detectable by market participants as debt-induced AM, despite the fact that the former could imply deviation from optimal business practices.