100 resultados para Quantitative verification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorophos and colourimetric procedures for alkaline phosphatase (ALP) testing were compared using milk with raw milk additions, purified bovine ALP additions and heat treatments. Repeatability was between 0.9% and 10.1% for Fluorophos, 3.5% and 46.1% for the Aschaffenburg and Mullen (A&M) procedure and 4.4% and 8.8% for the Scharer rapid test. Linearity (R-2) using raw milk addition was 0.96 between Fluorophos and the Scharer procedure. Between the Fluorophos and the A&M procedures, R-2 values were 0.98, 0.99 and 0.98 for raw milk additions, bovine ALP additions and heat treatments respectively. Fluorophos showed greater sensitivity and was both faster and simpler to perform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To develop a quantitative equation [prebiotic index ( PI)] to aid the analysis of prebiotic fermentation of commercially available and novel prebiotic carbohydrates in vitro, using previously published fermentation data. Methods: The PI equation is based on the changes in key bacterial groups during fermentation. The bacterial groups incorporated into this PI equation were bifidobacteria, lactobacilli, clostridia and bacteroides. The changes in these bacterial groups from previous studies were entered into the PI equation in order to determine a quantitative PI score. PI scores were than compared with the qualitative conclusions made in these publications. In general the PI scores agreed with the qualitative conclusions drawn and provided a quantitative measure. Conclusions: The PI allows the magnitude of prebiotic effects to be quantified rather than evaluations being solely qualitative. Significance and Impact of the Study: The PI equation may be of great use in quantifying prebiotic effects in vitro. It is expected that this will facilitate more rational food product development and the development of more potent prebiotics with activity at lower doses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increasing number of neuroscience experiments are using virtual reality to provide a more immersive and less artificial experimental environment. This is particularly useful to navigation and three-dimensional scene perception experiments. Such experiments require accurate real-time tracking of the observer's head in order to render the virtual scene. Here, we present data on the accuracy of a commonly used six degrees of freedom tracker (Intersense IS900) when it is moved in ways typical of virtual reality applications. We compared the reported location of the tracker with its location computed by an optical tracking method. When the tracker was stationary, the root mean square error in spatial accuracy was 0.64 mm. However, we found that errors increased over ten-fold (up to 17 mm) when the tracker moved at speeds common in virtual reality applications. We demonstrate that the errors we report here are predominantly due to inaccuracies of the IS900 system rather than the optical tracking against which it was compared. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper formally derives a new path-based neural branch prediction algorithm (FPP) into blocks of size two for a lower hardware solution while maintaining similar input-output characteristic to the algorithm. The blocked solution, here referred to as B2P algorithm, is obtained using graph theory and retiming methods. Verification approaches were exercised to show that prediction performances obtained from the FPP and B2P algorithms differ within one mis-prediction per thousand instructions using a known framework for branch prediction evaluation. For a chosen FPGA device, circuits generated from the B2P algorithm showed average area savings of over 25% against circuits for the FPP algorithm with similar time performances thus making the proposed blocked predictor superior from a practical viewpoint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new face verification algorithm based on Gabor wavelets and AdaBoost. In the algorithm, faces are represented by Gabor wavelet features generated by Gabor wavelet transform. Gabor wavelets with 5 scales and 8 orientations are chosen to form a family of Gabor wavelets. By convolving face images with these 40 Gabor wavelets, the original images are transformed into magnitude response images of Gabor wavelet features. The AdaBoost algorithm selects a small set of significant features from the pool of the Gabor wavelet features. Each feature is the basis for a weak classifier which is trained with face images taken from the XM2VTS database. The feature with the lowest classification error is selected in each iteration of the AdaBoost operation. We also address issues regarding computational costs in feature selection with AdaBoost. A support vector machine (SVM) is trained with examples of 20 features, and the results have shown a low false positive rate and a low classification error rate in face verification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It's a fact that functional verification (FV) is paramount within the hardware's design cycle. With so many new techniques available today to help with FV, which techniques should we really use? The answer is not straightforward and is often confusing and costly. The tools and techniques to be used in a project have to be decided upon early in the design cycle to get the best value for these new verification methods. This paper gives a quick survey in the form of an overview on FV, establishes the difference between verification and validation, describes the bottlenecks that appear in the verification process, examines the challenges in FV and exposes the current FV technologies and trends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-consistent field theory (SCFT) prediction for the compression force between two semi-dilute polymer brushes is compared to the benchmark experiments of Taunton et al. [Nature, 1988, 332, 712]. The comparison is done with previously established parameters, and without any fitting parameters whatsoever. The SCFT provides a significant quantitative improvement over the classical strong-stretching theory (SST), yielding excellent quantitative agreement with the experiment. Contrary to earlier suggestions, chain fluctuations cannot be ignored for normal experimental conditions. Although the analytical expressions of SST provide invaluable aids to understanding the qualitative behavior of polymeric brushes, the numerical SCFT is necessary in order to provide quantitatively accurate predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The success of Matrix-assisted laser desorption / ionisation (MALDI) in fields such as proteomics has partially but not exclusively been due to the development of improved data acquisition and sample preparation techniques. This has been required to overcome some of the short comings of the commonly used solid-state MALDI matrices such as - cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB). Solid state matrices form crystalline samples with highly inhomogeneous topography and morphology which results in large fluctuations in analyte signal intensity from spot to spot and positions within the spot. This means that efficient tuning of the mass spectrometer can be impeded and the use of MALDI MS for quantitative measurements is severely impeded. Recently new MALDI liquid matrices have been introduced which promise to be an effective alternative to crystalline matrices. Generally the liquid matrices comprise either ionic liquid matrices (ILMs) or a usually viscous liquid matrix which is doped with a UV lightabsorbing chromophore [1-3]. The advantages are that the droplet surface is smooth and relatively uniform with the analyte homogeneously distributed within. They have the ability to replenish a sampling position between shots negating the need to search for sample hot-spots. Also the liquid nature of the matrix allows for the use of additional additives to change the environment to which the analyte is added.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative analysis by mass spectrometry (MS) is a major challenge in proteomics as the correlation between analyte concentration and signal intensity is often poor due to varying ionisation efficiencies in the presence of molecular competitors. However, relative quantitation methods that utilise differential stable isotope labelling and mass spectrometric detection are available. Many drawbacks inherent to chemical labelling methods (ICAT, iTRAQ) can be overcome by metabolic labelling with amino acids containing stable isotopes (e.g. 13C and/or 15N) in methods such as Stable Isotope Labelling with Amino acids in Cell culture (SILAC). SILAC has also been used for labelling of proteins in plant cell cultures (1) but is not suitable for whole plant labelling. Plants are usually autotrophic (fixing carbon from atmospheric CO2) and, thus, labelling with carbon isotopes becomes impractical. In addition, SILAC is expensive. Recently, Arabidopsis cell cultures were labelled with 15N in a medium containing nitrate as sole nitrogen source. This was shown to be suitable for quantifying proteins and nitrogen-containing metabolites from this cell culture (2,3). Labelling whole plants, however, offers the advantage of studying quantitatively the response to stimulation or disease of a whole multicellular organism or multi-organism systems at the molecular level. Furthermore, plant metabolism enables the use of inexpensive labelling media without introducing additional stress to the organism. And finally, hydroponics is ideal to undertake metabolic labelling under extremely well-controlled conditions. We demonstrate the suitability of metabolic 15N hydroponic isotope labelling of entire plants (HILEP) for relative quantitative proteomic analysis by mass spectrometry. To evaluate this methodology, Arabidopsis plants were grown hydroponically in 14N and 15N media and subjected to oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are several advantages of using metabolic labeling in quantitative proteomics. The early pooling of samples compared to post-labeling methods eliminates errors from different sample processing, protein extraction and enzymatic digestion. Metabolic labeling is also highly efficient and relatively inexpensive compared to commercial labeling reagents. However, methods for multiplexed quantitation in the MS-domain (or ‘non-isobaric’ methods), suffer from signal dilution at higher degrees of multiplexing, as the MS/MS signal for peptide identification is lower given the same amount of peptide loaded onto the column or injected into the mass spectrometer. This may partly be overcome by mixing the samples at non-uniform ratios, for instance by increasing the fraction of unlabeled proteins. We have developed an algorithm for arbitrary degrees of nonisobaric multiplexing for relative protein abundance measurements. We have used metabolic labeling with different levels of 15N, but the algorithm is in principle applicable to any isotope or combination of isotopes. Ion trap mass spectrometers are fast and suitable for LC-MS/MS and peptide identification. However, they cannot resolve overlapping isotopic envelopes from different peptides, which makes them less suitable for MS-based quantitation. Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry is less suitable for LC-MS/MS, but provides the resolving power required to resolve overlapping isotopic envelopes. We therefore combined ion trap LC-MS/MS for peptide identification with FTICR LC-MS for quantitation using chromatographic alignment. We applied the method in a heat shock study in a plant model system (A. thaliana) and compared the results with gene expression data from similar experiments in literature.