72 resultados para Process-based model


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this paper is to present two multi-criteria decision-making models, including an Analytic Hierarchy Process (AHP) model and an Analytic Network Process (ANP) model for the assessment of deconstruction plans and to make a comparison between the two models with an experimental case study. Deconstruction planning is under pressure to reduce operation costs, adverse environmental impacts and duration, in the meanwhile to improve productivity and safety in accordance with structure characteristics, site conditions and past experiences. To achieve these targets in deconstruction projects, there is an impending need to develop a formal procedure for contractors to select a most appropriate deconstruction plan. Because numbers of factors influence the selection of deconstruction techniques, engineers definitely need effective tools to conduct the selection process. In this regard, multi-criteria decision-making methods such as AHP have been adopted to effectively support deconstruction technique selection in previous researches. in which it has been proved that AHP method can help decision-makers to make informed decisions on deconstruction technique selection based on a sound technical framework. In this paper, the authors present the application and comparison of two decision-making models including the AHP model and the ANP model for deconstruction plan assessment. The paper concludes that both AHP and ANP are viable and capable tools for deconstruction plan assessment under the same set of evaluation criteria. However, although the ANP can measure relationship among selection criteria and their sub-criteria, which is normally ignored in the AHP, the authors also indicate that whether the ANP model can provide a more accurate result should be examined in further research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This report addresses the extent that managerial practices can be shared between the aerospace and construction sectors. Current recipes for learning from other industries tend to be oversimplistic and often fail to recognise the embedded and contextual nature of managerial knowledge. Knowledge sharing between business sectors is best understood as an essential source of innovation. The process of comparison challenges assumptions and better equips managers to cope with future change. Comparisons between the aerospace and construction sectors are especially useful because they are so different. The two sectors differ hugely in terms of their institutional context, structure and technological intensity. The aerospace sector has experienced extensive consolidation and is dominated by a small number of global companies. Aerospace companies operate within complex networks of global interdependency such that collaborative working is a commercial imperative. In contrast, the construction sector remains highly fragmented and is characterised by a continued reliance on small firms. The vast majority of construction firms compete within localised markets that are too often characterised by opportunistic behaviour. Comparing construction to aerospace highlights the unique characteristics of both sectors and helps explain how managerial practices are mediated by context. Detailed comparisons between the two sectors are made in a range of areas and guidance is provided for the implementation of knowledge sharing strategies within and across organisations. The commonly accepted notion of ‘best practice’ is exposed as a myth. Indeed, universal models of best practice can be detrimental to performance by deflecting from the need to adapt continuously to changing circumstances. Competitiveness in the construction sector too often rests on efficiency in managing contracts, with a particular emphasis on the allocation of risk. Innovation in construction tends to be problem-driven and is rarely shared from project to project. In aerospace, the dominant model of competitiveness means that firms have little choice other than to invest in continuous innovation, despite difficult trading conditions. Research and development (R&D) expenditure in aerospace continues to rise as a percentage of turnovers. A sustained capacity for innovation within the aerospace sector depends crucially upon stability and continuity of work. In the construction sector, the emergence of the ‘hollowed-out’ firm has undermined the industry’s capacity for innovation. Integrated procurement contexts such as prime contracting in construction potentially provide a more supportive climate for an innovation-based model of competitiveness. However, investment in new ways of working depends upon a shift in thinking not only amongst construction contractors, but also amongst the industry’s major clients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of different sugars and glyoxal on the formation of acrylamide in low-moisture starch-based model systems was studied, and kinetic data were obtained. Glucose was more effective than fructose, tagatose, or maltose in acrylamide formation, whereas the importance of glyoxal as a key sugar fragmentation intermediate was confirmed. Glyoxal formation was greater in model systems containing asparagine and glucose rather than fructose. A solid phase microextraction GC-MS method was employed to determine quantitatively the formation of pyrazines in model reaction systems. Substituted pyrazine formation was more evident in model systems containing fructose; however, the unsubstituted homologue, which was the only pyrazine identified in the headspace of glyoxal-asparagine systems, was formed at higher yields when aldoses were used as the reducing sugar. Highly significant correlations were obtained for the relationship between pyrazine and acrylamide formation. The importance of the tautomerization of the asparagine-carbonyl decarboxylated Schiff base in the relative yields of pyrazines and acrylamide is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a new iterative algorithm for orthogonal frequency division multiplexing (OFDM) joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the relatively less studied problem of "overfitting" such that the iterative approach may converge to a trivial solution. Specifically, we apply a hard-decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the PHN, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical Simulations are also given to verify the proposed algorithm. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The identification of non-linear systems using only observed finite datasets has become a mature research area over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities have been intensively studied and widely used due to the availability of many linear-learning algorithms and their inherent convergence conditions. This article presents a systematic overview of basic research on model selection approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system identification is to find the minimal model with the best model generalisation performance from observational data only. The important concepts in achieving good model generalisation used in various non-linear system-identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective criteria based on the cross validation and experimental design. A significant advance in machine learning has been the development of the support vector machine as a means for identifying kernel models based on the structural risk minimisation principle. The developments on the convex optimisation-based model construction algorithms including the support vector regression algorithms are outlined. Input selection algorithms and on-line system identification algorithms are also included in this review. Finally, some industrial applications of non-linear models are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of eutrophication in river systems is poorly understood given the complex relationship between fixed plants, algae, hydrodynamics, water chemistry and solar radiation. However there is a pressing need to understand the relationship between the ecological status of rivers and the controlling environmental factors to help the reasoned implementation of the Water Framework Directive and Catchment Sensitive Farming in the UK. This research aims to create a dynamic, process-based, mathematical in-stream model to simulate the growth and competition of different vegetation types (macrophytes, phytoplankton and benthic algae) in rivers. The model, applied to the River Frome (Dorset, UK), captured well the seasonality of simulated vegetation types (suspended algae, macrophytes, epiphytes, sediment biofilm). Macrophyte results showed that local knowledge is important for explaining unusual changes in biomass. Fixed algae simulations indicated the need for the more detailed representation of various herbivorous grazer groups, however this would increase the model complexity, the number of model parameters and the required observation data to better define the model. The model results also highlighted that simulating only phytoplankton is insufficient in river systems, because the majority of the suspended algae have benthic origin in short retention time rivers. Therefore, there is a need for modelling tools that link the benthic and free-floating habitats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Remote sensing is the only practicable means to observe snow at large scales. Measurements from passive microwave instruments have been used to derive snow climatology since the late 1970’s, but the algorithms used were limited by the computational power of the era. Simplifications such as the assumption of constant snow properties enabled snow mass to be retrieved from the microwave measurements, but large errors arise from those assumptions, which are still used today. A better approach is to perform retrievals within a data assimilation framework, where a physically-based model of the snow properties can be used to produce the best estimate of the snow cover, in conjunction with multi-sensor observations such as the grain size, surface temperature, and microwave radiation. We have developed an existing snow model, SNOBAL, to incorporate mass and energy transfer of the soil, and to simulate the growth of the snow grains. An evaluation of this model is presented and techniques for the development of new retrieval systems are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Valuation is often said to be “an art not a science” but this relates to the techniques employed to calculate value not to the underlying concept itself. Valuation is the process of estimating price in the market place. Yet, such an estimation will be affected by uncertainties. Uncertainty in the comparable information available; uncertainty in the current and future market conditions and uncertainty in the specific inputs for the subject property. These input uncertainties will translate into an uncertainty with the output figure, the valuation. The degree of the uncertainties will vary according to the level of market activity; the more active a market, the more credence will be given to the input information. In the UK at the moment the Royal Institution of Chartered Surveyors (RICS) is considering ways in which the uncertainty of the output figure, the valuation, can be conveyed to the use of the valuation, but as yet no definitive view has been taken apart from a single Guidance Note (GN5, RICS 2003) stressing the importance of recognising uncertainty in valuation but not proffering any particular solution. One of the major problems is that Valuation models (in the UK) are based upon comparable information and rely upon single inputs. They are not probability based, yet uncertainty is probability driven. In this paper, we discuss the issues underlying uncertainty in valuations and suggest a probability-based model (using Crystal Ball) to address the shortcomings of the current model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Government targets for CO2 reductions are being progressively tightened, the Climate Change Act set the UK target as an 80% reduction by 2050 on 1990 figures. The residential sector accounts for about 30% of emissions. This paper discusses current modelling techniques in the residential sector: principally top-down and bottom-up. Top-down models work on a macro-economic basis and can be used to consider large scale economic changes; bottom-up models are detail rich to model technological changes. Bottom-up models demonstrate what is technically possible. However, there are differences between the technical potential and what is likely given the limited economic rationality of the typical householder. This paper recommends research to better understand individuals’ behaviour. Such research needs to include actual choices, stated preferences and opinion research to allow a detailed understanding of the individual end user. This increased understanding can then be used in an agent based model (ABM). In an ABM, agents are used to model real world actors and can be given a rule set intended to emulate the actions and behaviours of real people. This can help in understanding how new technologies diffuse. In this way a degree of micro-economic realism can be added to domestic carbon modelling. Such a model should then be of use for both forward projections of CO2 and to analyse the cost effectiveness of various policy measures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Valuation is often said to be “an art not a science” but this relates to the techniques employed to calculate value not to the underlying concept itself. Valuation is the process of estimating price in the market place. Yet, such an estimation will be affected by uncertainties. Uncertainty in the comparable information available; uncertainty in the current and future market conditions and uncertainty in the specific inputs for the subject property. These input uncertainties will translate into an uncertainty with the output figure, the valuation. The degree of the uncertainties will vary according to the level of market activity; the more active a market, the more credence will be given to the input information. In the UK at the moment the Royal Institution of Chartered Surveyors (RICS) is considering ways in which the uncertainty of the output figure, the valuation, can be conveyed to the use of the valuation, but as yet no definitive view has been taken. One of the major problems is that Valuation models (in the UK) are based upon comparable information and rely upon single inputs. They are not probability based, yet uncertainty is probability driven. In this paper, we discuss the issues underlying uncertainty in valuations and suggest a probability-based model (using Crystal Ball) to address the shortcomings of the current model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previous studies using coupled general circulation models (GCMs) suggest that the atmosphere model plays a dominant role in the modeled El Nin ̃ o–Southern Oscillation (ENSO), and that intermodel differences in the thermodynamical damping of sea surface temperatures (SSTs) are a dominant contributor to the ENSO amplitude diversity. This study presents a detailed analysis of the shortwave flux feedback (aSW) in 12 Coupled Model Intercomparison Project phase 3 (CMIP3) simulations, motivated by findings that aSW is the primary contributor to model thermodynamical damping errors. A ‘‘feedback decomposition method,’’ developed to elucidate the aSW biases, shows that all models un- derestimate the dynamical atmospheric response to SSTs in the eastern equatorial Pacific, leading to un- derestimated aSW values. Biases in the cloud response to dynamics and the shortwave interception by clouds also contribute to errors in aSW. Changes in the aSW feedback between the coupled and corresponding atmosphere-only simulations are related to changes in the mean dynamics. A large nonlinearity is found in the observed and modeled SW flux feedback, hidden when linearly cal- culating aSW. In the observations, two physical mechanisms are proposed to explain this nonlinearity: 1) a weaker subsidence response to cold SST anomalies than the ascent response to warm SST anomalies and 2) a nonlinear high-level cloud cover response to SST. The shortwave flux feedback nonlinearity tends to be underestimated by the models, linked to an underestimated nonlinearity in the dynamical response to SST. The process-based methodology presented in this study may help to correct model ENSO atmospheric biases, ultimately leading to an improved simulation of ENSO in GCMs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The UK has a target for an 80% reduction in CO2 emissions by 2050 from a 1990 base. Domestic energy use accounts for around 30% of total emissions. This paper presents a comprehensive review of existing models and modelling techniques and indicates how they might be improved by considering individual buying behaviour. Macro (top-down) and micro (bottom-up) models have been reviewed and analysed. It is found that bottom-up models can project technology diffusion due to their higher resolution. The weakness of existing bottom-up models at capturing individual green technology buying behaviour has been identified. Consequently, Markov chains, neural networks and agent-based modelling are proposed as possible methods to incorporate buying behaviour within a domestic energy forecast model. Among the three methods, agent-based models are found to be the most promising, although a successful agent approach requires large amounts of input data. A prototype agent-based model has been developed and tested, which demonstrates the feasibility of an agent approach. This model shows that an agent-based approach is promising as a means to predict the effectiveness of various policy measures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the next few decades, it is expected that increasing fossil fuel prices will lead to a proliferation of energy crop cultivation initiatives. The environmental sustainability of these activities is thus a pressing issue—particularly when they take place in vulnerable regions, such as West Africa. In more general terms, the effect of increased CO2 concentrations and higher temperatures on biomass production and evapotranspiration affects the evolution of the global hydrological and carbon cycles. Investigating these processes for a C4 crop, such as sugarcane, thus provides an opportunity both to extend our understanding of the impact of climate change, and to assess our capacity to model the underpinning processes. This paper applies a process-based crop model to sugarcane in Ghana (where cultivation is planned), and the São Paulo region of Brazil (which has a well-established sugarcane industry). We show that, in the Daka River region of Ghana, provided there is sufficient irrigation, it is possible to generate approximately 75% of the yield achieved in the São Paulo region. In the final part of the study, the production of sugarcane under an idealized temperature increase climate change scenario is explored. It is shown that doubling CO2 mitigates the degree of water stress associated with a 4 °C increase in temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glacier fluctuations exclusively due to internal variations in the climate system are simulated using downscaled integrations of the ECHAM4/OPYC coupled general circulation model (GCM). A process-based modeling approach using a mass balance model of intermediate complexity and a dynamic ice flow model considering simple shearing flow and sliding are applied. Multimillennia records of glacier length fluctuations for Nigardsbreen (Norway) and Rhonegletscher (Switzerland) are simulated using autoregressive processes determined by statistically downscaled GCM experiments. Return periods and probabilities of specific glacier length changes using GCM integrations excluding external forcings such as solar irradiation changes, volcanic, or anthropogenic effects are analyzed and compared to historical glacier length records. Preindustrial fluctuations of the glaciers as far as observed or reconstructed, including their advance during the “Little Ice Age,” can be explained by internal variability in the climate system as represented by a GCM. However, fluctuations comparable to the present-day glacier retreat exceed any variation simulated by the GCM control experiments and must be caused by external forcing, with anthropogenic forcing being a likely candidate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[1] We have implemented a process-based isoprene emission model in the HadGEM2 Earth-system model with coupled atmospheric chemistry in order to examine the feedback between isoprene emission and climate. Isoprene emissions and their impact on atmospheric chemistry and climate are estimated for preindustrial (1860–1869), present-day (2000–2009), and future (2100–2109) climate conditions. The estimate of 460 TgC/yr for present-day global total isoprene emission is consistent with previous estimates. Preindustrial isoprene emissions are estimated to be 26% higher than present-day. Future isoprene emissions using the RCP8.5 scenario are similar to present-day because increased emissions resulting from climate warming are countered by CO2 inhibition of isoprene emissions. The impact of biogenic isoprene emissions on the global O3 burden and CH4 lifetime is small but locally significant, and the impact of changes in isoprene emissions on atmospheric chemistry depends strongly on the state of climate and chemistry.