74 resultados para Potential of maximum entropy
Resumo:
A simple four-dimensional assimilation technique, called Newtonian relaxation, has been applied to the Hamburg climate model (ECHAM), to enable comparison of model output with observations for short periods of time. The prognostic model variables vorticity, divergence, temperature, and surface pressure have been relaxed toward European Center for Medium-Range Weather Forecasts (ECMWF) global meteorological analyses. Several experiments have been carried out, in which the values of the relaxation coefficients have been varied to find out which values are most usable for our purpose. To be able to use the method for validation of model physics or chemistry, good agreement of the model simulated mass and wind field is required. In addition, the model physics should not be disturbed too strongly by the relaxation forcing itself. Both aspects have been investigated. Good agreement with basic observed quantities, like wind, temperature, and pressure is obtained for most simulations in the extratropics. Derived variables, like precipitation and evaporation, have been compared with ECMWF forecasts and observations. Agreement for these variables is smaller than for the basic observed quantities. Nevertheless, considerable improvement is obtained relative to a control run without assimilation. Differences between tropics and extratropics are smaller than for the basic observed quantities. Results also show that precipitation and evaporation are affected by a sort of continuous spin-up which is introduced by the relaxation: the bias (ECMWF-ECHAM) is increasing with increasing relaxation forcing. In agreement with this result we found that with increasing relaxation forcing the vertical exchange of tracers by turbulent boundary layer mixing and, in a lesser extent, by convection, is reduced.
Resumo:
Acrylamide is a probable human carcinogen that forms in plant-derived foods when free asparagine and reducing sugars react at high temperatures. The identification of rye varieties with low acrylamide-forming potential or agronomic conditions that produce raw material with low acrylamide precursor concentrations would reduce the acrylamide formed in baked rye foods without the need for additives or potentially costly changes to processes. This work compared five commercial rye varieties grown under a range of fertilisation regimes to investigate the effects of genotype and nutrient (nitrogen and sulphur) availability on the accumulation of acrylamide precursors. A strong correlation was established between the free asparagine concentration of grain and the acrylamide formed upon heating. The five rye varieties accumulated different concentrations of free asparagine in the grain, indicating that there is genetic control of this trait and that variety selection could be useful in reducing acrylamide levels in rye products. High levels of nitrogen fertilisation were found to increase the accumulation of free asparagine, showing that excessive nitrogen application should be avoided in order not to exacerbate the problem of acrylamide formation. This effect of nitrogen was mitigated in two of the varieties by the application of sulphur.
Resumo:
The slow component of quartz OSL exhibits a high thermal stability, and, in many of the samples studied, a high dose saturation level (several hundreds or, even thousands, of Grays). These properties suggest that the slow component has potential as a long-range dating tool. Initial attempts have been made to obtain equivalent doses for a number of sedimentary samples. Single- and multiple-aliquot techniques were modified for use with the slow component. The results indicate that there is a good potential for sediment dating, particularly for samples of significant age. Experiments concerning the optical resetting of the slow component suggest that, given its slow optical depletion rate, dating may be restricted to aeolian sediments.
Resumo:
Flood simulation models and hazard maps are only as good as the underlying data against which they are calibrated and tested. However, extreme flood events are by definition rare, so the observational data of flood inundation extent are limited in both quality and quantity. The relative importance of these observational uncertainties has increased now that computing power and accurate lidar scans make it possible to run high-resolution 2D models to simulate floods in urban areas. However, the value of these simulations is limited by the uncertainty in the true extent of the flood. This paper addresses that challenge by analyzing a point dataset of maximum water extent from a flood event on the River Eden at Carlisle, United Kingdom, in January 2005. The observation dataset is based on a collection of wrack and water marks from two postevent surveys. A smoothing algorithm for identifying, quantifying, and reducing localized inconsistencies in the dataset is proposed and evaluated showing positive results. The proposed smoothing algorithm can be applied in order to improve flood inundation modeling assessment and the determination of risk zones on the floodplain.
Resumo:
Previously, using an in vitro static batch culture system, it was found that rice bran (RB), inulin, fibersol, mannanoligosaccharides (MOS), larch arabinogalactan and citrus pectin elicited prebiotic effects (in terms of increased numbers of bifidobacteria and lactic acid bacteria) on the faecal microbiota of a dog. The aim of the present study was to confirm the prebiotic potential of each individual substrate using multiple faecal donors, as well as assessing the prebiotic potential of 15 substrate blends made from them. Anaerobic static and stirred, pH-controlled batch culture systems inoculated with faecal samples from healthy dogs were used for this purpose. Fluorescence in situ hybridization (FISH) analysis using seven oligonucleotide probes targeting selected bacterial groups and DAPI (total bacteria) was used to monitor bacterial populations during fermentation runs. High-performance liquid chromatography was used to measure butyrate produced as a result of bacterial fermentation of the substrates. RB and a MOS/RB blend (1:1, w/w) were shown to elicit prebiotic and butyrogenic effects on the canine microbiota in static batch culture fermentations. Further testing of these substrates in stirred, pH-controlled batch culture fermentation systems confirmed the prebiotic and butyrogenic effects of MOS/RB, with no enhancement of Clostridium clusters I and II and Escherichia coli populations.
Resumo:
BACKGROUND. To use spectra acquired by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) from pre- and post-digital rectal examination (DRE) urine samples to search for discriminating peaks that can adequately distinguish between benign and malignant prostate conditions, and identify the peaks’ underlying biomolecules. METHODS. Twenty-five participants with prostate cancer (PCa) and 27 participants with a variety of benign prostatic conditions as confirmed by a 10-core tissue biopsy were included. Pre- and post-DRE urine samples were prepared for MALDI MS profiling using an automated clean-up procedure. Following mass spectra collection and processing, peak mass and intensity were extracted and subjected to statistical analysis to identify peaks capable of distinguishing between benign and cancer. Logistic regression was used to combine markers to create a sensitive and specific test. RESULTS. A peak at m/z 10,760 was identified as b-microseminoprotein (b-MSMB) and found to be statistically lower in urine from PCa participants using the peak’s average areas. By combining serum prostate-specific antigen (PSA) levels with MALDI MS-measured b-MSMB levels, optimum threshold values obtained from Receiver Operator characteristics curves gave an increased sensitivity of 96% at a specificity of 26%. CONCLUSIONS. These results demonstrate that with a simple sample clean-up followed by MALDI MS profiling, significant differences of MSMB abundance were found in post-DRE urine samples. In combination with PSA serum levels, obtained from a classic clinical assay led to high classification accuracy for PCa in the studied sample set. Our results need to be validated in a larger multicenter prospective randomized clinical trial.
Resumo:
European grassland-based livestock production systems are challenged to produce more milk and meat to meet increasing world demand and to achieve this by using fewer resources. Legumes offer great potential for coping with such requests. They have numerous features that can act together at different stages in the soil-plant-animal-atmosphere system and these are most effective in mixed swards with a legume abundance of 30-50%. The resulting benefits are a reduced dependency on fossil energy and industrial N fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication due to bioactive secondary metabolites. In addition, legumes may offer an option for adapting to higher atmospheric CO2 concentrations and to climate change. Legumes generate these benefits at the level of the managed land area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research in order to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland-livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can only be expected that legumes will become more important in the future.
Resumo:
Refractivity changes (ΔN) derived from radar ground clutter returns serve as a proxy for near-surface humidity changes (1 N unit ≡ 1% relative humidity at 20 °C). Previous studies have indicated that better humidity observations should improve forecasts of convection initiation. A preliminary assessment of the potential of refractivity retrievals from an operational magnetron-based C-band radar is presented. The increased phase noise at shorter wavelengths, exacerbated by the unknown position of the target within the 300 m gate, make it difficult to obtain absolute refractivity values, so we consider the information in 1 h changes. These have been derived to a range of 30 km with a spatial resolution of ∼4 km; the consistency of the individual estimates (within each 4 km × 4 km area) indicates that ΔN errors are about 1 N unit, in agreement with in situ observations. Measurements from an instrumented tower on summer days show that the 1 h refractivity changes up to a height of 100 m remain well correlated with near-surface values. The analysis of refractivity as represented in the operational Met Office Unified Model at 1.5, 4 and 12 km grid lengths demonstrates that, as model resolution increases, the spatial scales of the refractivity structures improve. It is shown that the magnitude of refractivity changes is progressively underestimated at larger grid lengths during summer. However, the daily time series of 1 h refractivity changes reveal that, whereas the radar-derived values are very well correlated with the in situ observations, the high-resolution model runs have little skill in getting the right values of ΔN in the right place at the right time. This suggests that the assimilation of these radar refractivity observations could benefit forecasts of the initiation of convection.
Resumo:
European grassland-based livestock production systems face the challenge of producing more meat and milk to meet increasing world demands and to achieve this using fewer resources. Legumes offer great potential for achieving these objectives. They have numerous features that can act together at different stages in the soil–plant–animal–atmosphere system, and these are most effective in mixed swards with a legume proportion of 30–50%. The resulting benefits include reduced dependence on fossil energy and industrial N-fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication, due to the presence of bioactive secondary metabolites. In addition, legumes may offer an adaptation option to rising atmospheric CO2 concentrations and climate change. Legumes generate these benefits at the level of the managed land-area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland–livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can be expected that forage legumes will become more important in the future.
Resumo:
Background. Falls and fear of falling present a major risk to older people as both can affect their quality of life and independence. Mobile assistive technologies (AT) fall detection devices may maximise the potential for older people to live independently for as long as possible within their own homes by facilitating early detection of falls. Aims. To explore the experiences and perceptions of older people and their carers as to the potential of a mobile falls detection AT device. Methods. Nine focus groups with 47 participants including both older people with a range of health conditions and their carers. Interviews were audio recorded, transcribed verbatim, and thematically analysed. Results. Four key themes were identified relating to participants’ experiences and perceptions of falling and the potential impact of a mobile falls detector: cause of falling, falling as everyday vulnerability, the environmental context of falling, and regaining confidence and independence by having a mobile falls detector. Conclusion. The perceived benefits of a mobile falls detector may differ between older people and their carers. The experience of falling has to be taken into account when designing mobile assistive technology devices as these may influence perceptions of such devices and how older people utilise them.
Resumo:
Colorectal cancer is the third most prevalent cancer worldwide and the most common diet-related cancer, influenced by diets rich in red meat, low in plant foods and high in saturated fats. Observational studies have shown that fruit and vegetable intake may reduce colorectal cancer risks, although the precise bioactive components remain unclear. This review will outline the evidence for the role of polyphenols, glucosinolates and fibres against cancer progression in the gastrointestinal tract. Those bioactive compounds are considered protective agents against colon cancer, with evidence taken from epidemiological, human clinical, animal and in vitro studies. Various mechanisms of action have been postulated, such as the potential of polyphenols and glucosinolates to inhibit cancer cell growth and the actions of insoluble fibres as prebiotics and the evidence for these actions are detailed within. In addition, recent evidence suggests that polyphenols also have the potential to shift the gut ecology in a beneficial manner. Such actions of both fibre and polyphenols in the gastrointestinal tract and through interaction with gut epithelial cells may act in an additive manner to help explain why certain fruits and vegetables, but not all, act to differing extents to inhibit cancer incidence and progression. Indeed, a focus on the individual actions of such fruit and vegetable components, in particular polyphenols, glucosinolates and fibres is necessary to help explain which components are active in reducing gastrointestinal cancer risk.
Resumo:
There is accumulating evidence that macroevolutionary patterns of mammal evolution during the Cenozoic follow similar trajectories on different continents. This would suggest that such patterns are strongly determined by global abiotic factors, such as climate, or by basic eco-evolutionary processes such as filling of niches by specialization. The similarity of pattern would be expected to extend to the history of individual clades. Here, we investigate the temporal distribution of maximum size observed within individual orders globally and on separate continents. While the maximum size of individual orders of large land mammals show differences and comprise several families, the times at which orders reach their maximum size over time show strong congruence, peaking in the Middle Eocene, the Oligocene and the Plio-Pleistocene. The Eocene peak occurs when global temperature and land mammal diversity are high and is best explained as a result of niche expansion rather than abiotic forcing. Since the Eocene, there is a significant correlation between maximum size frequency and global temperature proxy. The Oligocene peak is not statistically significant and may in part be due to sampling issues. The peak in the Plio-Pleistocene occurs when global temperature and land mammal diversity are low, it is statistically the most robust one and it is best explained by global cooling. We conclude that the macroevolutionary patterns observed are a result of the interplay between eco-evolutionary processes and abiotic forcing
Resumo:
The present study compares the impact of thermal and high pressure high temperature(HPHT) processing on volatile profile (via a non-targeted headspace fingerprinting) and structural and nutritional quality parameter (via targeted approaches) of orange and yellow carrot purees. The effect of oil enrichment was also considered. Since oil enrichment affects compounds volatility, the effect of oil was not studied when comparing the volatile fraction. For the targeted part, as yellow carrot purees were shown to contain a very low amount of carotenoids, focus was given to orange carrot purees. The results of the non-targeted approach demonstrated HPHT processing exerts a distinct effect on the volatile fractions compared to thermal processing. In addition, different colored carrot varieties are characterized by distinct headspace fingerprints. From a structural point of view, limited or no difference could be observed between orange carrot purees treated with HPHT or HT processes, both for samples without and with oil. From nutritional point of view, only in samples with oil, significant isomerisation of all-trans-β-carotene occurred due to both processing. Overall, for this type of product and for the selected conditions, HPHT processing seems to have a different impact on the volatile profile but rather similar impact on the structural and nutritional attributes compared to thermal processing.