62 resultados para Plants--Effects of acids on.
Resumo:
Background and purpose: Carisbamate is being developed for adjuvant treatment of partial onset epilepsy. Carisbamate produces anticonvulsant effects in primary generalized, complex partial and absence-type seizure models, and exhibits neuroprotective and antiepileptogenic properties in rodent epilepsy models. Phase IIb clinical trials of carisbamate demonstrated efficacy against partial onset seizures; however, its mechanisms of action remain unknown. Here, we report the effects of carisbamate on membrane properties, evoked and spontaneous synaptic transmission and induced epileptiform discharges in layer II-III neurones in piriform cortical brain slices. Experimental approach: Effects of carisbamate were investigated in rat piriform cortical neurones by using intracellular electrophysiological recordings. Key results: Carisbamate (50–400 mmol·L-1) reversibly decreased amplitude, duration and rise-time of evoked action potentials and inhibited repetitive firing, consistent with use-dependent Na+ channel block; 150–400 mmol·L-1 carisbamate reduced neuronal input resistance, without altering membrane potential. After microelectrode intracellular Cl- loading, carisbamate depolarized cells, an effect reversed by picrotoxin. Carisbamate (100–400 mmol·L-1) also selectively depressed lateral olfactory tract-afferent evoked excitatory synaptic transmission (opposed by picrotoxin), consistent with activation of a presynaptic Cl conductance. Lidocaine (40–320 mmol·L-1) mimicked carisbamate, implying similar modes of action. Carisbamate (300–600 mmol·L-1) had no effect on spontaneous GABAA miniature inhibitory postsynaptic currents and at lower concentrations (50–200 mmol·L-1) inhibited Mg2+-free or 4-aminopyridine-induced seizure-like discharges. Conclusions and implications: Carisbamate blocked evoked action potentials use-dependently, consistent with a primary action on Na+ channels and increased Cl- conductances presynaptically and, under certain conditions, postsynaptically to selectively depress excitatory neurotransmission in piriform cortical layer Ia-afferent terminals.
Resumo:
Previous theory and research in animals has identified the critical role that fetal testosterone (FT) plays in organizing sexually dimorphic brain development. However, to date there are no studies in humans directly testing the organizational effects of FT on structural brain development. In the current study we investigated the effects of FT on corpus callosum size and asymmetry. High-resolution structural magnetic resonance images (MRI) of the brain were obtained on 28 8-11-year-old boys whose exposure to FT had been previously measured in utero via amniocentesis conducted during the second trimester. Although there was no relationship between FT and midsaggital corpus callosum size, increasing FT was significantly related to increasing rightward asymmetry (e.g., Right>Left) of a posterior subsection of the callosum, the isthmus, that projects mainly to parietal and superior temporal areas. This potential organizational effect of FT on rightward callosal asymmetry may be working through enhancing the neuroprotective effects of FT and result in an asymmetric distribution of callosal axons. We suggest that this possible organizational effect of FT on callosal asymmetry may also play a role in shaping sexual dimorphism in functional and structural brain development, cognition, and behavior.
Resumo:
The effects of irrigation and nitrogen (N) fertilizer on Hagberg falling number (HFN), specific weight (SW) and blackpoint (BP) of winter wheat (Triticum aestivum L) were investigated. Mains water (+50 and +100 mm month(-1), containing 44 mg NO3- litre(-1) and 28 mg SO42- litre(-1)) was applied with trickle irrigation during winter (17 January-17 March), spring (21 March-20 May) or summer (24 May-23 July). In 1999/2000 these treatments were factorially combined with three N levels (0, 200, 400 kg N ha(-1)), applied to cv Hereward. In 2000/01 the 400 kg N ha(-1) treatment was replaced with cv Malacca given 200 kg N ha(-1). Irrigation increased grain yield, mostly by increasing grain numbers when applied in winter and spring, and by increasing mean grain weight when applied in summer. Nitrogen increased grain numbers and SW, and reduced BP in both years. Nitrogen increased HFN in 1999/2000 and reduced HFN in 2000/01. Effects of irrigation on HFN, SW and BP were smaller and inconsistent over year and nitrogen level. Irrigation interacted with N on mean grain weight: negatively for winter and spring irrigation, and positively for summer irrigation. Ten variables derived from digital image analysis of harvested grain were included with mean grain weight in a principal components analysis. The first principal component ('size') was negatively related to HFN (in two years) and BP (one year), and positively related to SW (two years). Treatment effects on dimensions of harvested grain could not explain all of the effects on HFN, BP and SW but the results were consistent with the hypothesis that water and nutrient availability, even when they were affected early in the season, could influence final grain quality if they influenced grain numbers and size. (C) 2004 Society of Chemical Industry
Resumo:
The effects of chlorpyrifos on aquatic systems are well documented. However, the consequences of the pesticide on soil food webs are poorly understood. In this field study, we hypothesised that the addition of a soil insecticide to an area of upland grassland would impact spider and Collembola communities by decreasing numbers of spiders, consequently, causing an increase in detritivore numbers and diversity. Chlorpyrifos was added to plots on an upland grassland in a randomised block design. Populations of Collembola and spiders were sampled by means of pitfall traps (activity density) and identified to species. Twelve species of Collembola were identified from the insecticide-treated and control plots. Species diversity, richness and evenness were all reduced in the chlorpyrifos plots, although the total number of Collembola increased ten-fold despite the abundance of some spider species being reduced. The dominant collembolan in the insecticide-treated plots was Ceratophysella denticulata, accounting for over 95% of the population. Forty-three species of spider were identified. There were a reduced number of spiders in insecticide-treated plots due mainly to a lower number of the linyphiid, Tiso vagans. However, there was no significant difference in spider diversity between the control and insecticide treatments. We discuss possible explanations for the increase in abundance of one collembolan species in response to chlorpyrifos and the consequences of this. The study emphasises the importance of understanding the effects of soil management practices on soil biodiversity, which is under increasing pressure from land development and food production. It also highlights the need for identification of soil invertebrates to an 'appropriate' taxonomic level for biodiversity estimates. (C) 2007 Elsevier GrnbH. All rights reserved.
Resumo:
Field experiments were conducted over 3 years to assess the effect of a triazole fungicide programme, and additions of strobilurin fungicides to it, on nitrogen uptake, accumulation and partitioning in a range of winter wheat cultivars. Commensurate with delayed senescence, fungicide programmes, particularly when including strobilurins, improved grain yield through improvements in both crop biomass and harvest index, although the relationship with green area duration of the flag leaf (GFLAD) depended on year and in some cases, cultivar. In all years fungicide treatments significantly increased the amount of nitrogen in the above-ground biomass, the amount of nitrogen in the grain and the nitrogen harvest index. All these effects could be linearly related to the fungicide effect on GFLAD. These relationships occasionally interacted with cultivar but there was no evidence that fungicide mode of action affected the relationship between GFLAD and yield of nitrogen in the grain. Fungicide treatments significantly reduced the amount of soil mineral N at harvest and when severe disease had been controlled, the net remobilization of N from the vegetation to the grain after anthesis. Fungicide maintained the filling of grain with both dry matter and nitrogen. The proportionate accumulation of nitrogen in the grain was later than that of dry matter and this difference was greater when fungicide had been applied. Effects of fungicide on grain protein concentration and its relationship with GFLAD were inconsistent over year and cultivar. There were several instances where grain protein concentration was unaffected despite large (1(.)5 t/ha) increases in grain yield following fungicide use. Dilution of grain protein concentration following fungicide use, when it did occur, was small compared with what would be predicted by adoption of other yield increasing techniques such as the selection of high yielding cultivars (based on currently available cultivars) or by growing wheat in favourable climates.
Resumo:
Very few studies have analyzed the dependence of population growth rate on population density, and even fewer have considered interaction effects of density and other stresses, such as exposure to toxic chemicals. Yet without such studies we cannot know whether chemicals harmful at low density have effects on carrying capacity or, conversely, whether chemicals reducing carrying capacity are also harmful at low density, impeding a population's capacity to recover from disturbance. This study examines the combined effects of population density and a toxicant (fluoranthene) on population growth rate (pgr) and carrying capacity using the deposit-feeding polychaete Capitella sp. I as a test organism. Populations were initiated with a stable age distribution, and population density and age/size distribution were followed during a period of 28 wk. Fluoranthene (FLU), population density, and their interaction influenced population growth rate. Population growth rate declined linearly with the logarithm of population biomass, but the slope of the relationship was steeper for the control populations than for populations exposed to 50 mug FLU/(g sediment dry mass). Populations exposed to 150 mug FLU/(g sediment dry mass) went extinct after 8 wk of exposure. Despite concerns that toxicant effects would be exacerbated at high density, we found the reverse to be the case, and effects of fluoranthene on population growth rate were much reduced in the region of carrying capacity. Fluoranthene did. reduce carrying capacity by 46%, and this could haven important implications for interacting species and/or sediment biogeochemical processes.
Resumo:
Conjugated linoleic acid (CLA) is a collective term for a mixture of positional and geometric isomers of conjugated dienoic derivatives of linoleic acid. CLA has received considerable attention as a result of animal experiments that report anti-carcinogenic, anti-atherogenic and anti-diabetic properties, and modulation of body composition and immune function. Several studies of CLA supplementation in human subjects have now been published, but in contrast to animal studies there has been marked variation between reports on the health-related outcomes. The consensus from seventeen published studies in human subjects is that CLA does not affect body weight or body composition. Some detrimental effects of the trans-10,cis-12 CLA isomer have also been reported in terms of altered blood lipid composition and impaired insulin sensitivity. Finally, CLA has only limited effects on immune functions in man. However, there have been reports of some interesting isomer-specific effects of CLA on the blood lipid profile, but not on immune function. These isomer-specific effects need further investigation. Until more is known, CLA supplementation in man should be considered with caution.
Resumo:
Background: Conjugated linoleic acid (CLA) is reported to have weight-reducing and antiatherogenic properties when fed to laboratory animals. However, the effects of CLA on human health and, in particular, the effects of individual CLA isomers are unclear. Objective: This study investigated the effects of 3 doses of highly enriched cis-9,trans-11 (0.59, 1.19, and 2.38 g/d) or trans-10,cis-12 (0.63, 1.26, and 2.52 g/d) CLA preparations on body composition, blood lipid profile, and markers of insulin resistance in healthy men. Design: Healthy men consumed 1, 2, and 4 capsules sequentially, containing either 80% cis-9,trans-11 CLA or 80% trans-10,cis-12 CLA for consecutive 8-wk periods. This phase was followed by a 6-wk washout and a crossover to the other isomer. Results: Body composition was not significantly affected by either isomer of CLA. Mean plasma triacylglycerol concentration was higher during supplementation with trans-10,cis-12 CLA than during that with cis-9,trans-11 CLA, although there was no influence of dose. There were significant effects of both isomer and dose on plasma total cholesterol and LDL-cholesterol concentrations but not on HDL-cholesterol concentration. The ratios of LDL to HDL cholesterol and of total to HDL cholesterol were higher during supplementation with trans-10,cis-12 CLA than during that with cis-9,trans-11 CLA. CLA supplementation had no significant effect on plasma insulin concentration, homeostasis model for insulin resistance, or revised quantitative insulin sensitivity check index. Conclusion: Divergent effects of cis-9,trans-11 CLA and trans10,cis-12 CLA appear on the blood lipid profile in healthy humans: trans-10,cis-12 CLA increases LDL:HDL cholesterol and total:HDL cholesterol, whereas cis-9,trans-11 CLA decreases them.
Resumo:
Background: Animal studies have suggested that conjugated linoleic acid (CLA), a natural component of ruminant meat and dairy products, may confer beneficial effects on health. However, little information on the effects of CLA on immune function is available, especially in humans. Furthermore, the effects of individual isomers of CLA have not been adequately investigated. Objective: This study investigated the effects of supplementing the diet with 3 doses of highly enriched cis-9,trans-11 CLA (0.59, 1.19, and 2.38 g/d) or trans-10,cis-12 CLA (0.63, 1.26, and 2.52 g/d) on immune outcomes in healthy humans. Design: The study had a randomized, double-blind, crossover design. Healthy men consumed 1, 2, and 4 capsules sequentially that contained 80% of either cis-9,trans-11 CLA or trans-10,cis-12 CLA for consecutive 8-wk periods. This regimen was followed by a 6-wk washout and a crossover to the other isomer. Results: Both CLA isomers decreased mitogen-induced T lymphocyte activation in a dose-dependent manner. There was a significant negative correlation between mitogen-induced T lymphocyte activation and the proportions of both cis-9,trans-11 CLA and trans-10,cis-12 CLA in peripheral blood mononuclear cell lipids. However, CLA did not affect lymphocyte subpopulations or serum concentrations of C-reactive protein and did not have any consistent effects on ex vivo cytokine production. Conclusion: CLA supplementation results in a dose-dependent reduction in the mitogen-induced activation of T lymphocytes. The effects of cis-9,trans-l I CLA and trans-10,cis-12 CLA were similar, and there was a negative correlation between mitogen-induced T lymphocyte activation and the cis-9,trans-11 CLA and trans-10,cis-12 CLA contents of mononuclear cells.
Resumo:
In this review we evaluate the cognitive and neural effects of positive and negative mood on executive function. Mild manipulations of negative mood appear to have little effect on cognitive control processes, whereas positive mood impairs aspects of updating, planning and switching. These cognitive effects may be linked to neurochemistry: with positive mood effects mediated by dopamine while negative mood effects may be mediated by serotonin levels. Current evidence on the effects of mood on regional brain activity during executive functions, indicates that the prefrontal cortex is a recurrent site of integration between mood and cognition. We conclude that there is a disparity between the importance of this topic and awareness of how mood affects, executive functions in the brain. Most behavioural and neuroimaging studies of executive function in normal samples do not explore the potential role of variations in mood, yet the evidence we outline indicates that even mild fluctuations in mood can have a significant influence on neural activation and cognition. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Background: Postnatal depression (PND) is associated with poor cognitive functioning in infancy and the early school years; long-term effects on academic outcome are not known. Method: Children of postnatally depressed (N = 50) and non-depressed mothers (N = 39), studied from infancy, were followed up at 16 years. We examined the effects on General Certificate of Secondary Education (GCSE) exam performance of maternal depression (postnatal and subsequent) and IQ, child sex and earlier cognitive development, and mother–child interactions, using structural equation modelling (SEM). Results: Boys, but not girls, of PND mothers had poorer GCSE results than control children. This was principally accounted for by effects on early child cognitive functioning, which showed strong continuity from infancy. PND had continuing negative effects on maternal interactions through childhood, and these also contributed to poorer GCSE performance. Neither chronic, nor recent, exposure to maternal depression had significant effects. Conclusions: The adverse effects of PND on male infants’ cognitive functioning may persist through development. Continuing difficulties in mother–child interactions are also important, suggesting that both early intervention and continuing monitoring of mothers with PND may be warranted.
Resumo:
The capacity for glucose, propionate or hormones of splanchnic origin to influence appetite by directly regulating the expression of neuropeptides in the feeding centres of the hypothalamus of the ruminant is not described. Therefore, our objective was to measure the direct effect of metabolites (glucose and propionate) or hormones [insulin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY)] on hypothalamic mRNA concentrations for neuropeptide Y (NPY), agouti-related peptide (AgRP) and proopiomelanocortin (POMC) following in vitro incubation. Hypothalamic tissue from 4- to 5-month-old lambs was obtained at slaughter and immediately incubated in culture media for 2 h at 36 °C. Treatments included a control Dulbecco’s modified Eagle medium (DMEM) containing 1 mm glucose or DMEM with the following additions: 10 mm glucose, 1 mm propionate, 1 nm insulin, 120 pm GLP-1, 100 pm PYY, 80 pm CCK or 10 mm glucose plus 1 nm insulin. The abundance of mRNA for NPY, AgRP and POMC was measured using quantitative reverse transcriptase PCR. Fisher’s protected LSD test was used to compare changes in relative mRNA concentrations for the hypothalamus incubated in the control media vs. the rest of the treatments. The media containing glucose plus insulin increased POMC mRNA concentration (p < 0.05), but did not affect NPY or AgRP mRNA concentration. There were no effects observed for the other treatments (p > 0.20). Results of the present study are consistent with the concept that effects of propionate on feed intake in ruminants is not mediated through direct effects on the hypothalamus, and that insulin is required for an effect of glucose on hypothalamic POMC expression.
Resumo:
Population studies have shown a positive correlation between diets rich in whole grains and a reduced risk of developing metabolic diseases, like diabetes, cardiovascular disease, and certain cancers. However, little is known about the mechanisms of action, particularly the impact different fermentable components of whole grains have on the human intestinal microbiota. The modulation of microbial populations by whole grain wheat flakes and the effects of toasting on digestion and subsequent fermentation profile were evaluated. Raw, partially toasted, and toasted wheat flakes were digested using simulated gastric and small intestinal conditions and then fermented using 24-hour, pH-controlled, anaerobic batch cultures inoculated with human feces. Major bacterial groups and production of short-chain fatty acids were compared with those for the prebiotic oligofructose and weakly fermented cellulose. Within treatments, a significant increase (P<.05) in bifidobacteria numbers was observed upon fermentation of all test carbohydrates, with the exception of cellulose. Toasting appeared to have an effect on growth of lactobacilli as only fermentation of raw wheat flakes resulted in a significant increase in levels of this group.
Resumo:
The objective of this study was to determine the concentration of total selenium (Se) and the proportions of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in the post mortem tissues of female pheasants (Phasianus Colchicus Torquator) offered diets containing graded additions of selenized enriched yeast (SY) or sodium selenite (SS). Thiobarbituric acid reactive substances (TBARS) and tissue glutathione peroxidase (GSH-Px) activity of breast (Pectoralis Major) were assessed at 0 and 5 d post-mortem. A total of 216 female pheasant chicks were enrolled onto the study. 24 birds were euthanased at the start of the study and samples of blood, breast muscle, leg muscle (Peroneus Longus and M. Gastrocnemius), heart, liver, kidney and gizzard collected for determination of total Se. Remaining birds were blocked by live weight and randomly allocated to one of four dietary treatments (n=48 birds/treatment) that either differed in Se source (SY vs. SS) or dose (Con [0.2 mg total Se/kg], SY-L and SS-L [0.3 mg/kg total Se as SY and SS, respectively], and SY-H [0.45 mg total Se/kg]). Following 42 and 91 days of treatment 24 birds/treatment were euthanased and samples of blood, breast muscle, leg muscle, heart, liver, kidney and gizzard retained for determination of total Se and the proportion of total Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and TBARS were determined in breast tissue at the end of the study. There were positive responses (P<0.001) in both blood and tissues to the graded addition of SY to the diet but the same responses were not apparent in the blood and tissues of selenite supplemented birds receiving comparable doses. Although there were differences between tissue types in the distribution of SeMet and SeCys there were few differences between treatments. There were effects of treatment on erythrocyte GSH-Px activity (P = 0.012) with values being higher in treatments SY-H and SS-L when compared to the negative control and treatment SY-L. There were no effects of treatment on tissue GSH-Px activity which is reflected in the overall lack of any treatment effects on TBARS.
Resumo:
Purpose: Retinoic acid (RA) is a metabolite of vitamin A that plays a fundamental role in the development and function of the human eye. The purpose of this study was to investigate the effects of RA on the phenotype of corneal stromal keratocytes maintained in vitro for extended periods under serum-free conditions. Methods: Keratocytes isolated from human corneas were cultured up to 21 days in serum-free media supplemented with RA or DMSO vehicle. The effects of RA and of its removal after treatment on cell proliferation and morphology were evaluated. In addition, the expression of keratocyte markers was quantified at the transcriptional and protein levels by quantitative PCR and immunoblotting or ELISA, respectively. Furthermore, the effects of RA on keratocyte migration were tested using scratch assays. Results: Keratocytes cultured with RA up to 10×10-6 M showed enhanced proliferation and stratification, and reduced mobility. RA also promoted the expression of keratocyte-characteristic proteoglycans such as keratocan, lumican, and decorin, and increased the amounts of collagen type-I in culture while significantly reducing the expression of matrix metalloproteases 1, 3, and 9. RA effects were reversible, and cell phenotype reverted to that of control after removal of RA from media. Conclusions: RA was shown to control the phenotype of human corneal keratocytes cultured in vitro by regulating cell behaviour and extracellular matrix composition. These findings contribute to our understanding of corneal stromal biology in health and disease, and may prove useful in optimizing keratocyte cultures for applications in tissue engineering, cell biology, and medicine.