59 resultados para Phase field modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using 1D Vlasov drift-kinetic computer simulations, it is shown that electron trapping in long period standing shear Alfven waves (SAWs) provides an efficient energy sink for wave energy that is much more effective than Landau damping. It is also suggested that the plasma environment of low altitude auroral-zone geomagnetic field lines is more suited to electron acceleration by inertial or kinetic scale Alfven waves. This is due to the self-consistent response of the electron distribution function to SAWs, which must accommodate the low altitude large-scale current system in standing waves. We characterize these effects in terms of the relative magnitude of the wave phase and electron thermal velocities. While particle trapping is shown to be significant across a wide range of plasma temperatures and wave frequencies, we find that electron beam formation in long period waves is more effective in relatively cold plasma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radar refractivity retrievals have the potential to accurately capture near-surface humidity fields from the phase change of ground clutter returns. In practice, phase changes are very noisy and the required smoothing will diminish large radial phase change gradients, leading to severe underestimates of large refractivity changes (ΔN). To mitigate this, the mean refractivity change over the field (ΔNfield) must be subtracted prior to smoothing. However, both observations and simulations indicate that highly correlated returns (e.g., when single targets straddle neighboring gates) result in underestimates of ΔNfield when pulse-pair processing is used. This may contribute to reported differences of up to 30 N units between surface observations and retrievals. This effect can be avoided if ΔNfield is estimated using a linear least squares fit to azimuthally averaged phase changes. Nevertheless, subsequent smoothing of the phase changes will still tend to diminish the all-important spatial perturbations in retrieved refractivity relative to ΔNfield; an iterative estimation approach may be required. The uncertainty in the target location within the range gate leads to additional phase noise proportional to ΔN, pulse length, and radar frequency. The use of short pulse lengths is recommended, not only to reduce this noise but to increase both the maximum detectable refractivity change and the number of suitable targets. Retrievals of refractivity fields must allow for large ΔN relative to an earlier reference field. This should be achievable for short pulses at S band, but phase noise due to target motion may prevent this at C band, while at X band even the retrieval of ΔN over shorter periods may at times be impossible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we show that periodic auroral arc structures are seen at the location of one particular auroral substorm onset for the 15 min preceding onset, suggesting that field line resonances should be considered a strong candidate for triggering substorm onset. Irrespective of whether this field line resonance is coincidentally or causally linked to this substorm onset, the characteristics of the field line resonance can be used to remote sense the characteristics of the geomagnetic field line that supports substorm onset. In this instance, the eigenfrequency of this resonance is around 12 mHz. Interestingly, however, there is no evidence of this field line resonance in a seven satellite major Time History of Events and Macroscale Interactions during Substorms (THEMIS)-GOES conjunction, ranging from geosynchronous orbit to ~30 RE. However, using space-based cross-phase measurements of the local field line eigenfrequency at the inner THEMIS locations, we find that the local field line eigenfrequency is 6–10 mHz. Hence, we can reliably say that this 12 mHz Field Line Resonance (FLR) must lie inside of THEMIS locations. Our conclusion is that a high-m field line resonance can both represent a strong candidate for a trigger for substorm onset, as first proposed by Samson et al. (1992), and that its characteristics can provide invaluable information as to where substorm onset occurs in the magnetosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply a numerical model of time-dependent ionospheric convection to two directly driven reconnection pulses during a 15-min interval of southward IMF on 26 November 2000. The model requires an input magnetopause reconnection rate variation, which is here derived from the observed variation in the upstream IMF clock angle, q. The reconnection rate is mapped to an ionospheric merging gap, the MLT extent of which is inferred from the Doppler-shifted Lyman-a emission on newly opened field lines, as observed by the FUV instrument on the IMAGE spacecraft. The model is used to reproduce a variety of features observed during this event: SuperDARN observations of the ionospheric convection pattern and transpolar voltage; FUV observations of the growth of patches of newly opened flux; FUVand in situ observations of the location of the Open-Closed field line Boundary (OCB) and a cusp ion step. We adopt a clock angle dependence of the magnetopause reconnection electric field, mapped to the ionosphere, of the form Enosin4(q/2) and estimate the peak value, Eno, by matching observed and modeled variations of both the latitude, LOCB, of the dayside OCB (as inferred from the equatorward edge of cusp proton emissions seen by FUV) and the transpolar voltage FPC (as derived using the mapped potential technique from SuperDARN HF radar data). This analysis also yields the time constant tOCB with which the open-closed boundary relaxes back toward its equilibrium configuration. For the case studied here, we find tOCB = 9.7 ± 1.3 min, consistent with previous inferences from the observed response of ionospheric flow to southward turnings of the IMF. The analysis confirms quantitatively the concepts of ionospheric flow excitation on which the model is based and explains some otherwise anomalous features of the cusp precipitation morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We employ a numerical model of cusp ion precipitation and proton aurora emission to fit variations of the peak Doppler-shifted Lyman-a intensity observed on 26 November 2000 by the SI-12 channel of the FUV instrument on the IMAGE satellite. The major features of this event appeared in response to two brief swings of the interplanetary magnetic field (IMF) toward a southward orientation. We reproduce the observed spatial distributions of this emission on newly opened field lines by combining the proton emission model with a model of the response of ionospheric convection. The simulations are based on the observed variations of the solar wind proton temperature and concentration and the interplanetary magnetic field clock angle. They also allow for the efficiency, sampling rate, integration time and spatial resolution of the FUV instrument. The good match (correlation coefficient 0.91, significant at the 98% level) between observed and modeled variations confirms the time constant (about 4 min) for the rise and decay of the proton emissions predicted by the model for southward IMF conditions. The implications for the detection of pulsed magnetopause reconnection using proton aurora are discussed for a range of interplanetary conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a−1 (range 34–144 Tg a−1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a−1 (range 13–121 Tg a−1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a−1 (range 16–121 Tg a−1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a−1; range 13–20 Tg a−1, with one model at 37 Tg a−1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6–2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8–9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a−1 (range 28–209 Tg a−1), which is on average 85% of the total OA deposition. Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations, the model–observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model–measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern. Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and POA aging, although the amount of OA present in the atmosphere remains largely underestimated, with a mean normalized bias (MNB) equal to −0.62 (−0.51) based on the comparison against OC (OA) urban data of all models at the surface, −0.15 (+0.51) when compared with remote measurements, and −0.30 for marine locations with OC data. The mean temporal correlations across all stations are low when compared with OC (OA) measurements: 0.47 (0.52) for urban stations, 0.39 (0.37) for remote stations, and 0.25 for marine stations with OC data. The combination of high (negative) MNB and higher correlation at urban stations when compared with the low MNB and lower correlation at remote sites suggests that knowledge about the processes that govern aerosol processing, transport and removal, on top of their sources, is important at the remote stations. There is no clear change in model skill with increasing model complexity with regard to OC or OA mass concentration. However, the complexity is needed in models in order to distinguish between anthropogenic and natural OA as needed for climate mitigation, and to calculate the impact of OA on climate accurately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Polar spacecraft had a prolonged encounter with the high-latitude dayside magnetopause on May 29, 1996. This encounter with the magnetopause occurred when the interplanetary magnetic field was directed northward. From the three-dimensional electron and ion distribution functions measured by the Hydra instrument, it has been possible to identify nearly all of the distinct boundary layer regions associated with high-latitude reconnection. The regions that have been identified are (1) the cusp; (2) the magnetopause current layer; (3) magnetosheath field lines that have interconnected in only the Northern Hemisphere; (4) magnetosheath field lines that have interconnected in only the Southern Hemisphere; (5) magnetosheath field lines that have interconnected in both the Northern and Southern Hemispheres; (6) magnetosheath that is disconnected from the terrestrial magnetic field; and (7) high-latitude plasma sheet field lines that are participating in magnetosheath reconnection. Reconnection over this time period was occurring at high latitudes over a broad local-time extent, interconnecting the magnetosheath and lobe and/or plasma sheet field lines in both the Northern and Southern Hemispheres. Newly closed boundary layer field lines were observed as reconnection occur-red first at high latitudes in one hemisphere and then later in the other. These observations establish the location of magnetopause reconnection during these northward interplanetary magnetic field conditions as being at high latitudes, poleward of the cusp, and further reinforce the general interpretation of electron and ion phase space density signatures as indicators of magnetic reconnection and boundary layer formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extended flight of the Airborne Ionospheric Observatory during the Geospace Environment Modeling (GEM) Pilot program on January 16, 1990, allowed continuous all-sky monitoring of the two-dimensional ionospheric footprint of the northward interplanetary magnetic field (IMF) cusp in several wavelengths. Especially important in determining the locus of magnetosheath electron precipitation was the 630.0-nm red line emission. The most striking morphological change in the images was the transient appearance of zonally elongated regions of enhanced 630.0-nm emission which resembled “rays” emanating from the centroid of the precipitation. The appearance of these rays was strongly correlated with the Y component of the IMF: when the magnitude of By was large compared to Bz, the rays appeared; otherwise, the distribution was relatively unstructured. Late in the flight the field of view of the imager included the field of view of flow measurements from the European incoherent scatter radar (EISCAT). The rays visible in 630.0-nm emission exactly aligned with the position of strong flow jets observed by EISCAT. We attribute this correspondence to the requirement of quasi-neutrality; namely, the soft electrons have their largest precipitating fluxes where the bulk of the ions precipitate. The ions, in regions of strong convective flow, are spread out farther along the flow path than in regions of weaker flow. The occurrence and direction of these flow bursts are controlled by the IMF in a manner consistent with newly opened flux tubes; i.e., when |By| > |Bz|, tension in the reconnected field lines produce east-west flow regions downstream of the ionospheric projection of the x line. We interpret the optical rays (flow bursts), which typically last between 5 and 15 min, as evidence of periods of enhanced dayside (or lobe) reconnection when |By| > |Bz|. The length of the reconnection pulse is difficult to determine, however, since strong zonal flows would be expected to persist until the tension force in the field line has decayed, even if the duration of the enhanced reconnection was relatively short.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for quantifying diffusive flows of O+ ions in the topside ionosphere from satellite soundings is described. A departure from diffusive equilibrium alters the shape of the plasma scale-height profile near the F2-peak where ion-neutral frictional drag is large. The effect enables the evaluation of , the field-aligned flux of O+ ions relative to the neutral oxygen atom gas, using MSIS model values for the neutral thermospheric densities and temperature. Upward flow values are accurate to within about 10%, the largest sources of error being the MSIS prediction for the concentration of oxygen atoms and the plasma temperature gradient deduced from the sounding. Downward flux values are only determined to within 20%. From 60,000 topside soundings, taken at the minimum and rising phase of the solar cycle, a total of 1098 mean scale-height profiles are identified for which no storm sudden commencement had occurred in the previous 12 days and for which Kp was less than 2o, each mean profile being an average of about six soundings. A statistical study ofdeduced from these profiles shows the diurnal cycle of O+ flow in the quiet, topside ionosphere at mid-latitudes and its seasonal variations. The differences betweenand ion flux observations from incoherent scatter radars are considered using the meridional thermospheric winds predicted by a global, three-dimensional model. The mean interhemispheric flow from summer to winter is compared with predictions by a numerical model of the protonospheric coupling of conjugate ionospheres for up to 6 days following a geomagnetic storm. The observed mean (of order 3 × 1016 ions day−1 along a flux tube of area 1 m2 at 1000 km) is larger than predicted for day 6 and the suggested explanation is a decrease in upward flows from the winter, daytime ionosphere between the sixth and twelfth days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The new Max-Planck-Institute Earth System Model (MPI-ESM) is used in the Coupled Model Intercomparison Project phase 5 (CMIP5) in a series of climate change experiments for either idealized CO2-only forcing or forcings based on observations and the Representative Concentration Pathway (RCP) scenarios. The paper gives an overview of the model configurations, experiments related forcings, and initialization procedures and presents results for the simulated changes in climate and carbon cycle. It is found that the climate feedback depends on the global warming and possibly the forcing history. The global warming from climatological 1850 conditions to 2080–2100 ranges from 1.5°C under the RCP2.6 scenario to 4.4°C under the RCP8.5 scenario. Over this range, the patterns of temperature and precipitation change are nearly independent of the global warming. The model shows a tendency to reduce the ocean heat uptake efficiency toward a warmer climate, and hence acceleration in warming in the later years. The precipitation sensitivity can be as high as 2.5% K−1 if the CO2 concentration is constant, or as small as 1.6% K−1, if the CO2 concentration is increasing. The oceanic uptake of anthropogenic carbon increases over time in all scenarios, being smallest in the experiment forced by RCP2.6 and largest in that for RCP8.5. The land also serves as a net carbon sink in all scenarios, predominantly in boreal regions. The strong tropical carbon sources found in the RCP2.6 and RCP8.5 experiments are almost absent in the RCP4.5 experiment, which can be explained by reforestation in the RCP4.5 scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The East China Sea is a hot area for typhoon waves to occur. A wave spectra assimilation model has been developed to predict the typhoon wave more accurately and operationally. This is the first time where wave data from Taiwan have been used to predict typhoon wave along the mainland China coast. The two-dimensional spectra observed in Taiwan northeast coast modify the wave field output by SWAN model through the technology of optimal interpolation (OI) scheme. The wind field correction is not involved as it contributes less than a quarter of the correction achieved by assimilation of waves. The initialization issue for assimilation is discussed. A linear evolution law for noise in the wave field is derived from the SWAN governing equations. A two-dimensional digital low-pass filter is used to obtain the initialized wave fields. The data assimilation model is optimized during the typhoon Sinlaku. During typhoons Krosa and Morakot, data assimilation significantly improves the low frequency wave energy and wave propagation direction in Taiwan coast. For the far-field region, the assimilation model shows an expected ability of improving typhoon wave forecast as well, as data assimilation enhances the low frequency wave energy. The proportion of positive assimilation indexes is over 81% for all the periods of comparison. The paper also finds that the impact of data assimilation on the far-field region depends on the state of the typhoon developing and the swell propagation direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well-known that social insects such as ants show interesting collective behaviors. How do they organize such behaviors? To expand understanding of collective behaviors of social insects, we focused on ants, Diacamma, and analyzed the behavior of a few individuals. In an experimental set-up, ants are placed in hemisphere without a nest and food and the trajectory of ants is recorded. From this bottom-up approach, we found following characteristics: 1. Activity of individuals increases and decreases periodically. 2. Spontaneous meeting process is observed between two ants and meeting spot of two ants is localized in the experimental field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainties in projected ultraviolet (UV) radiation may lead to future increases in UV irradiation of freshwater lakes. Because dissolved organic carbon (DOC) is the main binding phase for mercury (Hg) in freshwater lakes, an increase in DOC photo-oxidation may affect Hg speciation and bioavailability. We quantified the effect of DOC concentration on the rate of abiotic DOC photo-oxidation for five lakes (DOC = 3.27–12.3 mg L−1) in Kejimkujik National Park, Canada. Samples were irradiated with UV-A or UV-B radiation over a 72-h period. UV-B radiation was found to be 2.36 times more efficient at photo-oxidizing DOC than UV-A, with energy-normalized rates of dissolved inorganic carbon (DIC) production ranging from 3.8 × 10−5 to 1.1 × 10−4 mg L−1 J−1 for UV-A, and from 6.0 × 10−5 to 3.1 × 10−4 mg L−1 J−1 for UV-B. Energy normalized rates of DIC production were positively correlated with DOC concentrations. Diffuse integrated attenuation coefficients were quantified in situ (UV-A Kd = 0.056–0.180 J cm−1; UV-B Kd = 0.015–0.165 J cm−1) and a quantitative depth-integrated model for yearly DIC photo-production in each lake was developed. The model predicts that, UV-A produces between 3.2 and 100 times more DIC (1521–2851 mg m−2 year−1) than UV-B radiation (29.17–746.7 mg m−2 year−1). Future increases in UV radiation may increase DIC production and increase Hg bioavailability in low DOC lakes to a greater extent than in high DOC lakes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interannual-decadal variability of the wintertime mixed layer depths (MLDs) over the North Pacific is investigated from an empirical orthogonal function (EOF) analysis of an ensemble of global ocean reanalyses. The first leading EOF mode represents the interannual MLD anomalies centered in the eastern part of the central mode water formation region in phase opposition with those in the eastern subtropics and the central Alaskan Gyre. This first EOF mode is highly correlated with the Pacific decadal oscillation index on both the interannual and decadal time scales. The second leading EOF mode represents the MLD variability in the subtropical mode water (STMW) formation region and has a good correlation with the wintertime West Pacific (WP) index with time lag of 3 years, suggesting the importance of the oceanic dynamical response to the change in the surface wind field associated with the meridional shifts of the Aleutian Low. The above MLD variabilities are in basic agreement with previous observational and modeling findings. Moreover the reanalysis ensemble provides uncertainty estimates. The interannual MLD anomalies in the first and second EOF modes are consistently represented by the individual reanalyses and the amplitudes of the variabilities generally exceed the ensemble spread of the reanalyses. Besides, the resulting MLD variability indices, spanning the 1948–2012 period, should be helpful for characterizing the North Pacific climate variability. In particular, a 6-year oscillation including the WP teleconnection pattern in the atmosphere and the oceanic MLD variability in the STMW formation region is first detected.