63 resultados para Peak periods.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Distribution Network Operators (DNOs) role is becoming more difficult as electric vehicles and electric heating penetrate the network, increasing the demand. As a result it becomes harder for the distribution networks infrastructure to remain within its operating constraints. Energy storage is a potential alternative to conventional network reinforcement such as upgrading cables and transformers. The research presented here in this paper shows that due to the volatile nature of the LV network, the control approach used for energy storage has a significant impact on performance. This paper presents and compares control methodologies for energy storage where the objective is to get the greatest possible peak demand reduction across the day from a pre-specified storage device. The results presented show the benefits and detriments of specific types of control on a storage device connected to a single phase of an LV network, using aggregated demand profiles based on real smart meter data from individual homes. The research demonstrates an important relationship between how predictable an aggregation is and the best control methodology required to achieve the objective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reinforcing the Low Voltage (LV) distribution network will become essential to ensure it remains within its operating constraints as demand on the network increases. The deployment of energy storage in the distribution network provides an alternative to conventional reinforcement. This paper presents a control methodology for energy storage to reduce peak demand in a distribution network based on day-ahead demand forecasts and historical demand data. The control methodology pre-processes the forecast data prior to a planning phase to build in resilience to the inevitable errors between the forecasted and actual demand. The algorithm uses no real time adjustment so has an economical advantage over traditional storage control algorithms. Results show that peak demand on a single phase of a feeder can be reduced even when there are differences between the forecasted and the actual demand. In particular, results are presented that demonstrate when the algorithm is applied to a large number of single phase demand aggregations that it is possible to identify which of these aggregations are the most suitable candidates for the control methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ClearfLo project provides integrated measurements of the meteorology, composition and particulate loading of London's urban atmosphere to improve predictive capability for air quality. Air quality and heat are strong health drivers and their accurate assessment and forecast are important in densely populated urban areas. However, the sources and processes leading to high concentrations of main pollutants such as ozone, nitrogen dioxide, and fine and coarse particulate matter in complex urban areas are not fully understood, limiting our ability to forecast air quality accurately. This paper introduces the ClearfLo project's interdisciplinary approach to investigate the processes leading to poor air quality and elevated temperatures. Within ClearfLo (www.clearflo.ac.uk), a large multi-institutional project funded by the UK Natural Environment Research Council (NERC), integrated measurements of meteorology, gaseous and particulate composition/loading within London's atmosphere were undertaken to understand the processes underlying poor air quality. Long-term measurement infrastructure installed at multiple levels (street and elevated), and at urban background, kerbside and rural locations were complemented with high-resolution numerical atmospheric simulations . Combining these (measurement/modeling) enhances understanding of seasonal variations in meteorology and composition together with the controlling processes. Two intensive observation periods (winter 2012 and summer Olympics 2012) focus upon the vertical structure and evolution of the urban boundary layer, chemical controls on nitrogen dioxide and ozone production, in particular the role of volatile organic compounds, and processes controlling the evolution, size, distribution and composition of particulate matter. The paper shows that mixing heights are deeper over London than in the rural surroundings and the seasonality of the urban boundary layer evolution controls when concentrations peak. The composition also reflects the seasonality of sources such as domestic burning and biogenic emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Surface Urban Energy and Water Balance Scheme (SUEWS) is developed to include snow. The processes addressed include accumulation of snow on the different urban surface types: snow albedo and density aging, snow melting and re-freezing of meltwater. Individual model parameters are assessed and independently evaluated using long-term observations in the two cold climate cities of Helsinki and Montreal. Eddy covariance sensible and latent heat fluxes and snow depth observations are available for two sites in Montreal and one in Helsinki. Surface runoff from two catchments (24 and 45 ha) in Helsinki and snow properties (albedo and density) from two sites in Montreal are also analysed. As multiple observation sites with different land-cover characteristics are available in both cities, model development is conducted independent of evaluation. The developed model simulates snowmelt related runoff well (within 19% and 3% for the two catchments in Helsinki when there is snow on the ground), with the springtime peak estimated correctly. However, the observed runoff peaks tend to be smoother than the simulated ones, likely due to the water holding capacity of the catchments and the missing time lag between the catchment and the observation point in the model. For all three sites the model simulates the timing of the snow accumulation and melt events well, but underestimates the total snow depth by 18–20% in Helsinki and 29–33% in Montreal. The model is able to reproduce the diurnal pattern of net radiation and turbulent fluxes of sensible and latent heat during cold snow, melting snow and snow-free periods. The largest model uncertainties are related to the timing of the melting period and the parameterization of the snowmelt. The results show that the enhanced model can simulate correctly the exchange of energy and water in cold climate cities at sites with varying surface cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatially dense observations of gust speeds are necessary for various applications, but their availability is limited in space and time. This work presents an approach to help to overcome this problem. The main objective is the generation of synthetic wind gust velocities. With this aim, theoretical wind and gust distributions are estimated from 10 yr of hourly observations collected at 123 synoptic weather stations provided by the German Weather Service. As pre-processing, an exposure correction is applied on measurements of the mean wind velocity to reduce the influence of local urban and topographic effects. The wind gust model is built as a transfer function between distribution parameters of wind and gust velocities. The aim of this procedure is to estimate the parameters of gusts at stations where only wind speed data is available. These parameters can be used to generate synthetic gusts, which can improve the accuracy of return periods at test sites with a lack of observations. The second objective is to determine return periods much longer than the nominal length of the original time series by considering extreme value statistics. Estimates for both local maximum return periods and average return periods for single historical events are provided. The comparison of maximum and average return periods shows that even storms with short average return periods may lead to local wind gusts with return periods of several decades. Despite uncertainties caused by the short length of the observational records, the method leads to consistent results, enabling a wide range of possible applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using data from the EISCAT (European Incoherent Scatter) VHF radar and DMSP (Defense Meteorological Satellite Program) spacecraft passes, we study the motion of the dayside open-closed field line boundary during two substorm cycles. The satellite data show that the motions of ion and electron temperature boundaries in EISCAT data, as reported by Moen et al. (2004), are not localised around the radar; rather, they reflect motions of the open-closed field line boundary at all MLT throughout the dayside auroral ionosphere. The boundary is shown to erode equatorward when the IMF points southward, consistent with the effect of magnetopause reconnection. During the substorm expansion and recovery phases, the dayside boundary returns poleward, whether the IMF points northward or southward. However, the poleward retreat was much faster during the substorm for which the IMF had returned to northward than for the substorm for which the IMF remained southward – even though the former substorm is much the weaker of the two. These poleward retreats are consistent with the destruction of open flux at the tail current sheet. Application of a new analysis of the peak ion energies at the equatorward edge of the cleft/cusp/mantle dispersion seen by the DMSP satellites identifies the dayside reconnection merging gap to extend in MLT from about 9.5 to 15.5 h for most of the interval. Analysis of the boundary motion, and of the convection velocities seen near the boundary by EISCAT, allows calculation of the reconnection rate (mapped down to the ionosphere) from the flow component normal to the boundary in its own rest frame. This reconnection rate is not, in general, significantly different from zero before 06:45 UT (MLT<9.5 h) – indicating that the X line footprint expands over the EISCAT field-of-view to earlier MLT only occasionally and briefly. Between 06:45 UT and 12:45UT (9.5periods of steady southward IMF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superposed epoch studies have been carried out in order to determine the ionospheric response at mid-latitudes to southward turnings of the interplanetary magnetic field (IMF). This is compared with the geomagnetic response, as seen in the indices K p, AE and Dst. The solar wind, IMF and geomagnetic data used were hourly averages from the years 1967–1989 and thus cover a full 22-year cycle in the solar magnetic field. These data were divided into subsets, determined by the magnitudes of the southward turnings and the concomitant increase in solar wind pressure. The superposed epoch studies were carried out using the time of the southward turning as time zero. The response of the mid-latitude ionosphere is studied by looking at the F-layer critical frequencies, f o F2, from hourly soundings by the Slough ionosonde and their deviation from the monthly median values, δf o F2. For the southward turnings with a change in B z of δB z > 11.5 nT accompanied by a solar wind dynamic pressure P exceeding 5 nPa, the F region critical frequency, f o F2, shows a marked decrease, reaching a minimum value about 20 h after the southward turning. This recovers to pre-event values over the subsequent 24 h, on average. The Dst index shows the classic storm-time decrease to about −60 nT. Four days later, the index has still to fully recover and is at about −25 nT. Both the K p and AE indices show rises before the southward turnings, when the IMF is strongly northward but the solar wind dynamic pressure is enhanced. The average AE index does register a clear isolated pulse (averaging 650 nT for 2 h, compared with a background peak level of near 450 nT at these times) showing enhanced energy deposition at high latitudes in substorms but, like K p, remains somewhat enhanced for several days, even after the average IMF has returned to zero after 1 day. This AE background decays away over several days as the Dst index recovers, indicating that there is some contamination of the currents observed at the AE stations by the continuing enhanced equatorial ring current. For data averaged over all seasons, the critical frequencies are depressed at Slough by 1.3 MHz, which is close to the lower decile of the overall distribution of δf o Fl values. Taking 30-day periods around summer and winter solstice, the largest depression is 1.6 and 1.2 MHz, respectively. This seasonal dependence is confirmed by a similar study for a Southern Hemisphere station, Argentine Island, giving peak depressions of 1.8 MHz and 0.5 MHz for summer and winter. For the subset of turnings where δB z > 11.5 nT and P ≤ 5 nPa, the response of the geomagnetic indices is similar but smaller, while the change in δf o F2 has all but disappeared. This confirms that the energy deposited at high latitudes, which leads to the geomagnetic and ionospheric disturbances following a southward turning of the IMF, increases with the energy density (dynamic pressure) of the solar wind flow. The magnitude of all responses are shown to depend on δB z . At Slough, the peak depression always occurs when Slough rotates into the noon sector. The largest ionospheric response is for southward turnings seen between 15–21 UT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a first overview of flows in the high latitude ionosphere observed at 15 s resolution using the U.K.-Polar EISCAT experiment. Data are described from experiments conducted on two days, 27 October 1984 and 29 August 1985, which together span the local times between about 0200 and 2130MLT and cover five different regions of ionospheric flow. With increasing local time, these are: the dawn auroral zone flow cell, the dayside region of low background flows equatorward of the flow cells, the dusk auroral zone flow cell, the boundary region between the dusk auroral zone and the polar cap, and the evening polar cap. Flows in both the equatorward and poleward portions of the auroral zone cells appear to be relatively smooth, while in the central region of high speed flow considerable variations are generally present. These have the form of irregular fluctuations on a wide range of time scales in the early morning dawn cell, and impulsive wave-like variations with periods of a few minutes in the afternoon dusk cell. In the dayside region between the flow cells, the ionosphere is often essentially stagnant for long intervals, but low amplitude ULF waves with a period of about 5 min can also occur and persist for many cycles. These conditions are punctuated at one to two hour intervals by sudden ‘flow burst’ events with impulsively generated damped wave trains. Initial burst flows are generally directed poleward and can peak at line-of-sight speeds in excess of 1 km s^{−1} after perhaps 45 s. Flows in the polar cap are reasonably smooth on time scales of a few minutes and show no evidence for the presence of ULF waves. Under most, but not all, of the above conditions, the beam-swinging algorithm used to determine background vector flows should produce meaningful results. Comparison of these flow data with simultaneous plasma and magnetic field measurements in the solar wind, made by the AMPTE IRM and UKS spacecraft, emphasizes the strong control exerted on high latitude flows by the north-south component of the IMF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Possible future changes of clustering and return periods (RPs) of European storm series with high potential losses are quantified. Historical storm series are identified using 40 winters of reanalysis. Time series of top events (1, 2 or 5 year return levels (RLs)) are used to assess RPs of storm series both empirically and theoretically. Additionally, 800 winters of general circulation model simulations for present (1960–2000) and future (2060–2100) climate conditions are investigated. Clustering is identified for most countries, and estimated RPs are similar for reanalysis and present day simulations. Future changes of RPs are estimated for fixed RLs and fixed loss index thresholds. For the former, shorter RPs are found for Western Europe, but changes are small and spatially heterogeneous. For the latter, which combines the effects of clustering and event ranking shifts, shorter RPs are found everywhere except for Mediterranean countries. These changes are generally not statistically significant between recent and future climate. However, the RPs for the fixed loss index approach are mostly beyond the range of pre-industrial natural climate variability. This is not true for fixed RLs. The quantification of losses associated with storm series permits a more adequate windstorm risk assessment in a changing climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. To maximize the probability of rapid contact with a female’s pheromone plume, the trajectories of male foraging flights might be expected to be directed with respect to wind flow and also to be energetically efficient. 2. Flights directed either upwind, downwind, or crosswind have been proposed as optimal strategies for rapid and/or energetically efficient plume contact. Other possible strategies are random and Lévy walks, which have trajectories and turn frequencies that are not dictated by the direction of wind flow. 3. The planar flight paths of males of the day-active moth Virbia lamae were recorded during the customary time of its sexual activity. 4. We found no directional preference in these foraging flights with respect to the direction of contemporaneous wind flow, but, because crosswind encompasses twice the possible orientations of either upwind or downwind, a random orientation is in effect a de facto crosswind strategy. 5. A crosswind preference should be favoured when the plume extends farther downwind than crosswind, and this strategy is realized by V. lamae males by a random orientation of their trajectories with respect to current wind direction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present climate in the Nafud desert of northern Saudi Arabia is hyper-arid and moisture brought by north-westerly winds scarcely reaches the region. The existence of abundant palaeolake sediments provides evidence for a considerably wetter climate in the past. However, the existing chronological framework of these deposits is solely based on radiocarbon dating of questionable reliability, due to potential post-depositional contamination with younger 14C. By using luminescence dating, we show that the lake deposits were not formed between 40 and 20 ka as suggested previously, but approximately ca 410 ka, 320 ka, 200 ka, 125 ka, and 100 ka ago. All of these humid phases are in good agreement with those recorded in lake sediments and speleothems from southern Arabia. Surprisingly, no Holocene lake deposits were identified. Geological characteristics of the deposits and diatom analysis suggest that a single, perennial lake covered the entire south-western Nafud ca 320 ka ago. In contrast, lakes of the 200 ka, 125 ka, and 100 ka humid intervals were smaller and restricted to interdune depressions of a pre-existing dune relief. The concurrent occurrence of humid phases in the Nafud, southern Arabia and the eastern Mediterranean suggests that moisture in northern Arabia originated either from the Mediterranean due to more frequent frontal depression systems or from stronger Indian monsoon circulation, respectively. However, based on previously published climate model simulations and palaecolimate evidence from central Arabia and the Negev desert, we argue that humid climate conditions in the Nafud were probably caused by a stronger African monsoon and a distinct change in zonal atmospheric circulation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind generation's contribution to supporting peak electricity demand is one of the key questions in wind integration studies. Differently from conventional units, the available outputs of different wind farms cannot be approximated as being statistically independent, and hence near-zero wind output is possible across an entire power system. This paper will review the risk model structures currently used to assess wind's capacity value, along with discussion of the resulting data requirements. A central theme is the benefits from performing statistical estimation of the joint distribution for demand and available wind capacity, focusing attention on uncertainties due to limited histories of wind and demand data; examination of Great Britain data from the last 25 years shows that the data requirements are greater than generally thought. A discussion is therefore presented into how analysis of the types of weather system which have historically driven extreme electricity demands can help to deliver robust insights into wind's contribution to supporting demand, even in the face of such data limitations. The role of the form of the probability distribution for available conventional capacity in driving wind capacity credit results is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The predictability of high impact weather events on multiple time scales is a crucial issue both in scientific and socio-economic terms. In this study, a statistical-dynamical downscaling (SDD) approach is applied to an ensemble of decadal hindcasts obtained with the Max-Planck-Institute Earth System Model (MPI-ESM) to estimate the decadal predictability of peak wind speeds (as a proxy for gusts) over Europe. Yearly initialized decadal ensemble simulations with ten members are investigated for the period 1979–2005. The SDD approach is trained with COSMO-CLM regional climate model simulations and ERA-Interim reanalysis data and applied to the MPI-ESM hindcasts. The simulations for the period 1990–1993, which was characterized by several windstorm clusters, are analyzed in detail. The anomalies of the 95 % peak wind quantile of the MPI-ESM hindcasts are in line with the positive anomalies in reanalysis data for this period. To evaluate both the skill of the decadal predictability system and the added value of the downscaling approach, quantile verification skill scores are calculated for both the MPI-ESM large-scale wind speeds and the SDD simulated regional peak winds. Skill scores are predominantly positive for the decadal predictability system, with the highest values for short lead times and for (peak) wind speeds equal or above the 75 % quantile. This provides evidence that the analyzed hindcasts and the downscaling technique are suitable for estimating wind and peak wind speeds over Central Europe on decadal time scales. The skill scores for SDD simulated peak winds are slightly lower than those for large-scale wind speeds. This behavior can be largely attributed to the fact that peak winds are a proxy for gusts, and thus have a higher variability than wind speeds. The introduced cost-efficient downscaling technique has the advantage of estimating not only wind speeds but also estimates peak winds (a proxy for gusts) and can be easily applied to large ensemble datasets like operational decadal prediction systems.