143 resultados para PTERODECTES ROBIN
Resumo:
Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with oxirane, oxetane, and tetrahydrofuran (THF). The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at four or five temperatures in the range 294-605 K. All three reactions showed pressure dependences characteristic of third-body-assisted association reactions with, surprisingly, SiH2 + oxirane showing the least and SiH2 + THF showing the most pressure dependence. The second-order rate constants obtained by extrapolation to the high-pressure limits at each temperature fitted the Arrhenius equations where the error limits are single standard deviations: log(k(oxirane)(infinity)/cm(3) molecule(-1) s(-1)) = (-11.03 +/- 0.07) + (5.70 +/- 0.51) kJ mol(-1)/RT In 10 log(k(oxetane)(infinity)/cm(3) molecule(-1) s(-1)) = (-11.17 +/- 0.11) + (9.04 +/- 0.78) kJ mol(-1)/RT In 10 log(k(THF)(infinity)/cm(3) molecule(-1) s(-1)) = (-10.59 +/- 0.10) + (5.76 +/- 0.65) kJ mol(-1)/RT In 10 Binding-energy values of 77, 97, and 92 kJ mol(-1) have been obtained for the donor-acceptor complexes of SiH2 with oxirane, oxetane, and THF, respectively, by means of quantum chemical (ab initio) calculations carried Out at the G3 level. The use of these values to model the pressure dependences of these reactions, via RRKM theory, provided a good fit only in the case of SiH2 + THF. The lack of fit in the other two cases is attributed to further reaction pathways for the association complexes of SiH2 with oxirane and oxetane. The finding of ethene as a product of the SiH2 + oxirane reaction supports a pathway leading to H2Si=O + C2H4 predicted by the theoretical calculations of Apeloig and Sklenak.
Resumo:
In November 2008, a group of scientists met at the 6th Meeting of the International Scientific Association of Probiotics and Prebiotics (ISAPP) in London, Ontario, Canada, to discuss the functionality of prebiotics. As a result of this, it was concluded that the prebiotic field is currently dominated by gastrointestinal events. However, in the future, it may be the case that other mixed microbial ecosystems may be modulated by a prebiotic approach, such as the oral cavity, skin and the urogenital tract. Therefore, a decision was taken to build upon the current prebiotic status and define a niche for ‘dietary prebiotics’. This review is co-authored by the working group of ISAPP scientists and sets the background for defining a dietary prebiotic as ‘‘a selectively fermented ingredient that results in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health’’.
Resumo:
Time-resolved kinetic studies of the reaction of germylene, GeH2, generated by laser. ash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with 2-butyne, CH3C CCH3. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 300-556 K. The second order rate constants obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.46 +/- 10.06) + (5.16 +/- 10.47) kJ mol(-1)/ RT ln 10 Calculations of the energy surface of the GeC4H8 reaction system were carried out employing the additivity principle, by combining previous quantum chemical calculations of related reaction systems. These support formation of 1,2-dimethylvinylgermylene (rather than 2,3-dimethylgermirene) as the end product. RRKM calculations of the pressure dependence of the reaction are in reasonable agreement with this finding. The reactions of GeH2 with C2H2 and with CH3CRCCH3 are compared and contrasted.
Resumo:
Time-resolved studies of chlorosilylene, CISiH, generated by the 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with trimethylsilane, Me3SiH, in the gas phase. The reaction was studied at total pressures up to 100 torr (with and without added SF6) over the temperature range 297-407 K. The rate constants were found to be pressure independent and gave the following Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-13.97 +/- 0.25) + (12.57 +/- 1.64) kJ mol(-1)/RT In 10. The Arrhenius parameters are consistent with a mechanism involving an intermediate complex, whose rearrangement is the rate-determining step. Quantum chemical calculations of the potential energy surface for this reaction and also the reactions of CISiH with SiH4 and the other methylsilanes support this conclusion. Comparisons of both experiment and theory with the analogous Si-H insertion processes of SiH2 and SiMe2 show that the main factor causing the lower reactivity of ClSiH is the secondary energy barrier. The calculations also show the existence of a novel intramolecular H-atom exchange process in the complex of ClSiH with MeSiH3.
Resumo:
Time-resolved kinetic studies of the reactions of silylene, SiH2, and dideutero-silylene, SiD2, generated by laser. ash photolysis of phenylsilane and phenylsilane-d(3), respectively, have been carried out to obtain rate coefficients for their bimolecular reactions with 2-butyne, CH3C CCH3. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas at five temperatures in the range 294-612 K. The second-order rate coefficients, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equations where the error limits are single standard deviations: log(k(H)(infinity)/cm(3) molecule(-1) s(-1)) = (-9.67 +/- 0.04) + (1.71 +/- 0.33) kJ mol(-1)/RTln10 log(k(D)(infinity)/cm(3) molecule(-1) s(-1)) = (-9.65 +/- 0.01) + (1.92 +/- 0.13) kJ mol(-1)/RTln10 Additionally, pressure-dependent rate coefficients for the reaction of SiH2 with 2-butyne in the presence of He (1-100 Torr) were obtained at 301, 429 and 613 K. Quantum chemical (ab initio) calculations of the SiC4H8 reaction system at the G3 level support the formation of 2,3-dimethylsilirene [cyclo-SiH2C(CH3)=C(CH3)-] as the sole end product. However, reversible formation of 2,3-dimethylvinylsilylene [CH3CH=C(CH3)SiH] is also an important process. The calculations also indicate the probable involvement of several other intermediates, and possible products. RRKM calculations are in reasonable agreement with the pressure dependences at an enthalpy value for 2,3-dimethylsilirene fairly close to that suggested by the ab initio calculations. The experimental isotope effects deviate significantly from those predicted by RRKM theory. The differences can be explained by an isotopic scrambling mechanism, involving H - D exchange between the hydrogens of the methyl groups and the D-atoms in the ring in 2,3-dimethylsilirene-1,1-d(2). A detailed mechanism involving several intermediate species, which is consistent with the G3 energy surface, is proposed to account for this.
Resumo:
Laser flash photolysis studies of silylene, SiH2, generated by the 193 nm laser flash photolysis phenylsilane, PhSiH3, have been carried out to obtain rate constants for its bimolecular reaction with PhSiH3 itself, in the gas phase. The reaction was studied in SF6 (mostly at 10 Torr total pressure) over the temperature range 298-595 K. The rate constants (also found to be pressure independent) gave the following Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-9.92 +/- 0.04) + (3.31 +/- 0.27) kJ mol(-1)/RT ln 10 Similar investigations of the reaction of silylene with benzene, C6H6, (295-410 K) gave data suggestive of the fact that SiH2 might be reacting with photochemical products of C6H6 as well as with C6H6 itself. However, in the latter system, apparent rate constants were sufficiently low to indicate that in the reaction of SiH2 with PhSiH3 addition to the aromatic ring was unlikely to be in excess of 3% of the total. Quantum chemical calculations of the energy surface for SiH2 + C6H6 indicate that 7-silanorcaradiene and 7-silacycloheptatriene are possible products but that PhSiH3 formation is unlikely. RRKM calculations suggest that 7-silanorcaradiene should be the initial product but that it cannot be collisionally stabilized under experimental conditions
Resumo:
In 1989, the computer programming language POP-11 is 21 years old. This book looks at the reasons behind its invention, and traces its rise from an experimental language to a major AI language, playing a major part in many innovating projects. There is a chapter on the inventor of the language, Robin Popplestone, and a discussion of the applications of POP-11 in a variety of areas. The efficiency of AI programming is covered, along with a comparison between POP-11 and other programming languages. The book concludes by reviewing the standardization of POP-11 into POP91.
Resumo:
The possibility of a rapid collapse in the strength of the Atlantic meridional overturning circulation (AMOC), with associated impacts on climate, has long been recognized. The suggested basis for this risk is the existence of two stable regimes of the AMOC (‘on’ and ‘off’), and such bistable behaviour has been identified in a range of simplified climate models. However, up to now, no state-of-the-art atmosphere-ocean coupled global climate model (AOGCM) has exhibited such behaviour, leading to the interpretation that the AMOC is more stable than simpler models indicate. Here we demonstrate AMOC bistability in the response to freshwater perturbations in the FAMOUS AOGCM - the most complex AOGCM to exhibit such behaviour to date. The results also support recent suggestions that the direction of the net freshwater transport at the southern boundary of the Atlantic by the AMOC may be a useful physical indicator of the existence of bistability. We also present new estimates for this net freshwater transport by the AMOC from a range of ocean reanalyses which suggest that the Atlantic AMOC is currently in a bistable regime, although with large uncertainties. More accurate observational constraints, and an improved physical understanding of this quantity, could help narrow uncertainty in the future evolution of the AMOC and to assess the risk of a rapid AMOC collapse.
Resumo:
The Eyjafjallajökull volcano in Iceland erupted explosively on 14 April 2010, emitting a plume of ash into the atmosphere. The ash was transported from Iceland toward Europe where mostly cloud-free skies allowed ground-based lidars at Chilbolton in England and Leipzig in Germany to estimate the mass concentration in the ash cloud as it passed overhead. The UK Met Office's Numerical Atmospheric-dispersion Modeling Environment (NAME) has been used to simulate the evolution of the ash cloud from the Eyjafjallajökull volcano during the initial phase of the ash emissions, 14–16 April 2010. NAME captures the timing and sloped structure of the ash layer observed over Leipzig, close to the central axis of the ash cloud. Relatively small errors in the ash cloud position, probably caused by the cumulative effect of errors in the driving meteorology en route, result in a timing error at distances far from the central axis of the ash cloud. Taking the timing error into account, NAME is able to capture the sloped ash layer over the UK. Comparison of the lidar observations and NAME simulations has allowed an estimation of the plume height time series to be made. It is necessary to include in the model input the large variations in plume height in order to accurately predict the ash cloud structure at long range. Quantitative comparison with the mass concentrations at Leipzig and Chilbolton suggest that around 3% of the total emitted mass is transported as far as these sites by small (<100 μm diameter) ash particles.
Resumo:
The A-Train constellation of satellites provides a new capability to measure vertical cloud profiles that leads to more detailed information on ice-cloud microphysical properties than has been possible up to now. A variational radar–lidar ice-cloud retrieval algorithm (VarCloud) takes advantage of the complementary nature of the CloudSat radar and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar to provide a seamless retrieval of ice water content, effective radius, and extinction coefficient from the thinnest cirrus (seen only by the lidar) to the thickest ice cloud (penetrated only by the radar). In this paper, several versions of the VarCloud retrieval are compared with the CloudSat standard ice-only retrieval of ice water content, two empirical formulas that derive ice water content from radar reflectivity and temperature, and retrievals of vertically integrated properties from the Moderate Resolution Imaging Spectroradiometer (MODIS) radiometer. The retrieved variables typically agree to within a factor of 2, on average, and most of the differences can be explained by the different microphysical assumptions. For example, the ice water content comparison illustrates the sensitivity of the retrievals to assumed ice particle shape. If ice particles are modeled as oblate spheroids rather than spheres for radar scattering then the retrieved ice water content is reduced by on average 50% in clouds with a reflectivity factor larger than 0 dBZ. VarCloud retrieves optical depths that are on average a factor-of-2 lower than those from MODIS, which can be explained by the different assumptions on particle mass and area; if VarCloud mimics the MODIS assumptions then better agreement is found in effective radius and optical depth is overestimated. MODIS predicts the mean vertically integrated ice water content to be around a factor-of-3 lower than that from VarCloud for the same retrievals, however, because the MODIS algorithm assumes that its retrieved effective radius (which is mostly representative of cloud top) is constant throughout the depth of the cloud. These comparisons highlight the need to refine microphysical assumptions in all retrieval algorithms and also for future studies to compare not only the mean values but also the full probability density function.
Resumo:
Modern farming has caused considerable declines in UK bumblebee populations, and, while options exist for farmers to increase the quantity of bee-friendly habitat, uptake has been low. Robin Blake explains how existing habitats on farms could be enhanced for the benefit of bumblebees