96 resultados para POLYMER ELECTROLYTE MEMBRANE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 2D porous material, Cu-3(tmen)(3)(tma)(2)(H2O)(2)(.)6.5H(2)O [tmen = N,N,N',N'-tetramethylethane-1,2-diamine; tmaH(3) = 1,3,5-benzenetricarboxylic acid/trimesic acid], has been synthesized and characterized by X-ray single crystal analysis, variable temperature magnetic measurements, IR spectra and XRPD pattern. The complex consists of 2D layers built by three crystallographically independent Cu(tmen) moieties bridged by tma anions. Of the three copper ions, Cu(1) and Cu(2) present distorted square pyramidal coordination geometry, while the third exhibits a severely distorted octahedral environment. The Cu(1)(tmen) and Cu(2)(tmen) building blocks bridged by tma anions give rise to chains with a zig-zag motif, which are cross-connected by Cu(3)(tmen)-tma polymers sharing metal ions Cu(2) through pendant tma carboxylates. The resulting 2D architecture extends in the crystallographic ab-plane. The adjacent sheets are embedded through the Cu(3)(tmen) tma chains, leaving H2O-filled channels. There are 6.5 lattice water molecules per formula unit, some of which are disordered. Upon heating, the lattice water molecules get eliminated without destroying the crystal morphology and the compound rehydrated reversibly on exposure to humid atmosphere. Magnetic data of the complex have been fitted considering isolated irregular Cu-3 triangles (three different J parameters) by applying the CLUMAG program. The best fit indicates three close comparable J parameters and very weak antiferromagnetic interactions are operative between the metal centers. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis, structural characterization, and magnetic properties of a new cyano-bridged one-dimensional iron (III)-gadolinium (III) compound, trans-[Gd(o-phen)(2)(H2O)(2)(mu-CN)(2)Fe(CN)(4)], - 2no-phen (o-phen = 1,10-phenanthroline), have been described. The compound crystallizes in the triclinic P (1) over bar space group with the following unit cell parameters: a = 10.538(14) angstrom, b = 12.004(14) angstrom, c = 20.61(2) angstrom, alpha = 92.41(1)degrees, beta = 92.76(1)degrees, gamma = 11 2.72(1)degrees, and Z = 2. In this complex, each gadolinium (III) is coordinated to two nitrile nitrogens of the CN groups coming from two different ferricyanides, the mutually trans cyanides of each of which links another different Gd-III to create -NC-Fe(CN)(4)-CN-Gd-NC- type 1-D chain structure. The one-dimensional chains are self-assembled in two-dimensions via weak C-H center dot center dot center dot N hydrogen bonds. Both the variable-temperature (2-300 K, 0.01 T and 0.8 T) and variable-field (0-50 000 Gauss, 2 K) magnetic measurements reveal the existence of very weak interaction in this molecule. The temperature dependence of the susceptibilities has been analyzed using a model for a chain of alternating classic (7/2) and quantum (1/2) spins. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With a solution technique, NaY zeolite incorporated, tetraethylorthosilicate-crosslinked poly(vinyl alcohol) membranes were prepared. The resulting membranes were tested for their ability to separate isopropyl alcohol/water mixtures by pervaporation in the temperature range of 30-50 degrees C. The effects of the zeolite content and feed composition on the pervaporation performance of the membranes were investigated. The experimental results demonstrated that both flux and selectivity increased simultaneously with increasing zeolite content in the membranes. This was explained on the basis of the enhancement of hydrophilicity, selective adsorption, and establishment of a molecular sieving action attributed to the creation of pores in the membrane matrix. The membrane containing 15 mass % zeolite exhibited the highest separation selectivity of 3991 with a flux of 5.39 X 10(-2) kg/m(2) h with 10 mass % water in the feed at 30 degrees C. The total flux and flux of water were close to each other for almost all the studied membranes, and this suggested that the membranes could be used effectively to break the azeotropic point of water/isopropyl alcohol mixtures to remove a small amount of water from isopropyl alcohol. From the temperature-dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. The activation energy values obtained for water were significantly lower than those for isopropyl alcohol, and this suggested that the developed membranes had a higher separation efficiency for water/isopropyl alcohol systems. The activation energy values for total permeation and water permeation were found to be almost the same for all the membranes, and this signified that coupled transport was minimal because of the highly selective nature of the membranes. Positive heat of sorption values were observed in all the membranes, and this suggested that Henry's mode of sorption was predominant. (c) 2008 Wiley Periodicals, lnc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rare mu(6)-oxo-centered Mn-6 mixed-valent cluster (1) is prepared and used as a secondary building unit for the self-assembly of its azido-bridged polymeric analogue (2) in a systematic way with the retention of the Mn-6 core of (1). Both complexes are characterized by X-ray single-crystal structure determination. The complex 1 was crystallized in a monoclinic system, space group P2(1), a = 11.252(5) A, b = 20.893(9) A, c = 12.301(6) A, and beta = 115.853(7)degrees, whereas the polymeric analogue was crystallized in an orthorhombic system, space group P2(1)2(1)2(1), a = 13.1941(8) A, b = 14.9897(9) A, and c = 27.8746(14) A. Variable-temperature magnetic behavior showed the presence of strong antiferromagnetic interaction in both cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ion-conducting polymer wherein at least 80% of the repeat units comprise an ion-conducting region and a spacer region is disclosed. The ion-conducting region has an aromatic backbone of one or more aromatic groups, wherein at least one ion-conducting functional group is attached to each aromatic group. The spacer region has an aromatic backbone of at least four aromatic groups, wherein no ion-conducting functional groups are attached to the aromatic backbone. The polymer is suitable for use as a fuel cell membrane, and can be incorporated into membrane electrode assemblies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Baby leaf salads are gaining in popularity over traditional whole head lettuce salads in response to consumer demand for greater variety and convenience in their diet. Baby lettuce leaves are mixed, washed and packaged as whole leaves, with a shelf-life of approximately 10 days post-processing. End of shelf-life, as determined by the consumer, is typified by bruising, water-logging and blackening of the leaves, but the biological events causing this phenotype have not been studied to date. We investigated the physiological and ultrastructural characteristics during postharvest shelf-life of two lettuce varieties with very different leaf morphologies. Membrane disruption was an important determinant of cell death in both varieties. although the timing and characteristics of breakdown was different in each with Lollo rossa showing signs of aging such as thylakoid disruption and plastoglobuli accumulation earlier than Cos. Membranes in Lollo rossa showed a later, but more distinct increase in permeability than in Cos. as indicated by electrolyte leakage and the presence of cytoplasmic fragments in the vacuole, but Cos membranes show distinct fractures towards the end of shelf-life. The tissue lost less than 25% fresh weight during shelf-life and there was little protein loss compared to developmentally aging leaves in an ambient environment. Biophysical measurements showed that breakstrength was significantly reduced in Lollo rossa, whereas irreversible leaf plasticity was significantly reduced in Cos leaves. The reversible elastic properties of both varieties changed throughout shelf-life. We compared the characteristics of shelf-life in both varieties of bagged lettuce leaves with other leafy salad crops and discuss the potential targets for future work to improve postharvest quality of baby leaf lettuce. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polymer conformation structure of gluten extracted from a Polish wheat cultivar, Korweta, and gluten subtractions obtained from 2 U.K. breadmaking and biscuit flour cultivars, Hereward and Riband, was investigated using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The results showed the conformation of proteins varied between flour, hydrated flour, and hydrated gluten. The beta-sheet structure increased progressively from flour to hydrated flour and to hydrated gluten. In hydrated gluten protein fractions comprising gliadin, soluble glutenin, and gel protein, beta-sheet structure increased progressively from soluble gliadin and glutenin to gluten and gel protein; beta-sheet content was also greater in the gel protein from the breadmaking flour Hereward than the biscuit flour Riband.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recycle ultrafiltration membrane reactor was used to develop a continuous synthesis process for the production of isomaltooligosaccharides (IMO) from sucrose, using the enzymes dextransucrase and dextranase. A variety of membranes were tested and the parameters affecting reactor stability, productivity, and product molecular weight distribution were investigated. Enzyme inactivation in the reactor was reduced with the use of a non-ionic surfactant but its use had severe adverse effects on the membrane pore size and porosity. During continuous isomaltooligosaccharide synthesis, dextransucrase inactivation was shown to occur as a result of the dextranase activity and it was dependent mainly on the substrate availability in the reactor and the hydrolytic activity of dextranase. Substrate and dextranase concentrations (50-200 mg/mL(-1) and 10-30 U/mL(-1), respectively) affected permeate fluxes, reactor productivity, and product average molecular weight. The oligodextrans and isomaltooligosaccharides formed had molecular weights lower than in batch synthesis reactions but they largely consisted of oligosaccharides with a degree of polymerization (DP) greater than 5, depending on the synthesis conditions. No significant rejection of the sugars formed was shown by the membranes and permeate flux was dependent on tangential flow velocity. (C) 2004 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modem polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is essentially independent of variations in MW amongst wheat varieties of varying baking performance and is not related to variations in baking performance, and that it is not the size of the soluble glutenin polymers, but the structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking, in particular their extensional strain hardening properties. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures in the range 25-60 degrees C. Strain hardening and failure strain of cell walls were both seen to decrease with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties to higher temperatures (60 degrees C), whilst the cell walls of poor breadmaking doughs became unstable at lower temperatures (45-50 degrees C) and had lower strain hardening. Strain hardening measured at 50 degrees C gave good correlations with baking volume, with the best correlations achieved between those rheological measurements and baking tests which used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of I defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to their strain hardening properties, and that extensional rheological measurements can be used as predictors of baking quality. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modern polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is essentially independent of variations in MW amongst wheat varieties of varying baking performance and is not related to variations in baking performance, and that it is not the size of the soluble glutenin polymers, but the structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking, in particular their extensional strain hardening properties. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures in the range 25oC to 60oC. Strain hardening and failure strain of cell walls were both seen to decrease with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties to higher temperatures (60oC), whilst the cell walls of poor breadmaking doughs became unstable at lower temperatures (45oC to 50oC) and had lower strain hardening. Strain hardening measured at 50oC gave good correlations with baking volume, with the best correlations achieved between those rheological measurements and baking tests which used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of 1 defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to their strain hardening properties, and that extensional rheological measurements can be used as predictors of baking quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of galacto-oligosaccharides (GOS) synthesis from lactose with beta-galactosidase from Kluyveromyces lactis (Maxilact(R) L2000) was carried out. The synthesis was performed using various initial lactose concentrations ranging from 220 to 400 mg/mL and enzyme concentrations ranging from 3 to 9 U/mL, and was investigated at 40degreesC and pH 7, in a stirred-tank reactor. In the experimental range examined, the results showed the amount of GOS formed depended on lactose concentration but not on enzyme concentration. Galactose was a competitive inhibitor, while glucose was a non-competitive inhibitor. In a further study, a laboratory-scale reactor system, fitted with a 10-kDa NMWCO composite regenerated cellulose membrane, was used in a continuous process. The reactor was operated in cross-flow mode. The effect of operating pressures on flux and productivity was investigated by applying different transmembrane pressures to the system. The continuous process showed better production performance compared to the batch synthesis with the same lactose and enzyme concentrations at 40degreesC, pH 7. Comparison of product structures from batch and continuous processes, analyzed by HPAEPAD and methylation analysis, showed similarities but differed from the structures found in a commercial GOS product (Vivinal(R)GOS). (C) 2004 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ibuprofen (IB), a BCS Class II compound, is a highly crystalline substance with poor solubility properties. Here we report on the disruption of this crystalline structure upon intimate contact with the polymeric carrier cross-linked polyvinylpyrrolidone (PVP-CL) facilitated by low energy simple mixing. Whilst strong molecular interactions between APIs and carriers within delivery systems would be expected on melting or through solvent depositions, this is not the case with less energetic mixing. Simple mixing of the two compounds resulted in a significant decrease in the differential scanning calorimetry (DSC) melting enthalpy for IB, indicating that approximately 30% of the crystalline content was disordered. This structural change was confirmed by broadening and intensity diminution of characteristic IB X-ray powder diffractometry (PXRD) peaks. Unexpectedly, the crystalline content of the drug continued to decrease upon storage under ambient conditions. The molecular environment of the mixture was further investigated using Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectroscopy. These data suggest that the primary interaction between these components of the physical mix is hydrogen bonding, with a secondary mechanism involving electrostatic/hydrophobic interactions through the IB benzene ring. Such interactions and subsequent loss of crystallinity could confer a dissolution rate advantage for IB. (C) 2006 Elsevier B.V. All rights reserved.