155 resultados para Orographic precipitation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elongated crystalline particles formed as by-products during poly(arylene ether ketone) synthesis by electrophilic precipitation-polycondensation of 4,4'-diphenoxybenzophenone with terephthaloyl chloride or isophthaloyl chloride, thought previously to be polymer-whiskers, have now been identified as macrocyclic phases. Single crystal X-ray analysis of the needle-like particles formed in the reaction with terephthaloyl chloride, using the microdiffraction technique with synchrotron radiation, revealed that they consist of a macrocylic compound containing ten phenylene units, i.e. the [2 + 2] cyclic dimer. An analogous structure has also been demonstrated for the corresponding macrocycle derived from the reaction of 4,4-diphenoxybenzophenone with isophthaloyl chloride. Chloroform extraction of the products of the two polycondensations dissolved the macrocyclic material (but not the linear polymer), and analysis of the extracts by MALDI-TOF mass spectrometry demonstrated the presence in both cases of homologous families of macrocyclic products. Higher yields of macrocycles were obtained under pseudo-high dilution conditions, enabling the [2 + 2] cyclodimers from reactions of 4,4'-diphenoxybenzophenone with both terephthaloyl and isophthaloyl chloride to be isolated as pure compounds and fully characterised. (C) 2003 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5°-resolution range from approximately 50% at 1 mm h−1 to 20% at 14 mm h−1. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%–80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5° resolution is relatively small (less than 6% at 5 mm day−1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%–35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%–15% at 5 mm day−1, with proportionate reductions in latent heating sampling errors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LaMn and LaCo doped barium hexaferrites of formula Ba(1-x)LaxFe(12-x)MxO19 (M=Mn, Co) (x=0.05 to 0.40) were prepared with an improved co-precipitation/molten salt method. For the synthesis, aqueous solutions of the appropriate metal chlorides were prepared in the ratio required except that the initial mole ratio of Fe and dopants to Ba was chosen to be 11:1, and then mixed with excess Na2CO3. The solutions were then cooled, filtered off, dried, then mixed with KCl flux, and heated at 450 degrees C and for 2 h. The temperature was then raised to 950 degrees C and kept for 4 h, then cooled. This new synthesis method, which employs a lower temperature and shorter reaction time, gives products with improved crystallinity and purity while the saturation magnetization and coercivity values are comparable with those synthesized via the high temperature method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method has been developed which enables the easy and inexpensive preparation of gram quantities of (–)-epigallocatechin gallate from green tea (Camellia sinensis). A decaffeinated aqueous brew of commercial green tea is treated with caffeine (30 m ). The precipitate is redissolved after decaffeination with chloroform and further purified by solvent partition with ethyl hexanoate and propyl acetate. Commercial leaf (25 g) yields 400 mg (–)-epigallocatechin gallate at better than 80% purity, as judged by reversed phase HPLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ precipitation measurements can extremely differ in space and time. Taking into account the limited spatial–temporal representativity and the uncertainty of a single station is important for validating mesoscale numerical model results as well as for interpreting remote sensing data. In situ precipitation data from a high resolution network in North-Eastern Germany are analysed to determine their temporal and spatial representativity. For the dry year 2003 precipitation amounts were available with 10 min resolution from 14 rain gauges distributed in an area of 25 km 25 km around the Meteorological Observatory Lindenberg (Richard-Aßmann Observatory). Our analysis reveals that short-term (up to 6 h) precipitation events dominate (94% of all events) and that the distribution is skewed with a high frequency of very low precipitation amounts. Long-lasting precipitation events are rare (6% of all precipitation events), but account for nearly 50% of the annual precipitation. The spatial representativity of a single-site measurement increases slightly for longer measurement intervals and the variability decreases. Hourly precipitation amounts are representative for an area of 11 km 11 km. Daily precipitation amounts appear to be reliable with an uncertainty factor of 3.3 for an area of 25 km 25 km, and weekly and monthly precipitation amounts have uncertainties of a factor of 2 and 1.4 when compared to 25 km 25 km mean values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intensity and distribution of daily precipitation is predicted to change under scenarios of increased greenhouse gases (GHGs). In this paper, we analyse the ability of HadCM2, a general circulation model (GCM), and a high-resolution regional climate model (RCM), both developed at the Met Office's Hadley Centre, to simulate extreme daily precipitation by reference to observations. A detailed analysis of daily precipitation is made at two UK grid boxes, where probabilities of reaching daily thresholds in the GCM and RCM are compared with observations. We find that the RCM generally overpredicts probabilities of extreme daily precipitation but that, when the GCM and RCM simulated values are scaled to have the same mean as the observations, the RCM captures the upper-tail distribution more realistically. To compare regional changes in daily precipitation in the GHG-forced period 2080-2100 in the GCM and the RCM, we develop two methods. The first considers the fractional changes in probability of local daily precipitation reaching or exceeding a fixed 15 mm threshold in the anomaly climate compared with the control. The second method uses the upper one-percentile of the control at each point as the threshold. Agreement between the models is better in both seasons with the latter method, which we suggest may be more useful when considering larger scale spatial changes. On average, the probability of precipitation exceeding the 1% threshold increases by a factor of 2.5 (GCM and RCM) in winter and by I .7 (GCM) or 1.3 (RCM) in summer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical studies using satellite data and radiosondes have shown that precipitation increases with column water vapor (CWV) in the tropics, and that this increase is much steeper above some critical CWV value. Here, eight years of 1-min-resolution microwave radiometer and optical gauge data at Nauru Island are analyzed to better understand the relationships among CWV, column liquid water (CLW), and precipitation at small time scales. CWV is found to have large autocorrelation times compared with CLW and precipitation. Before precipitation events, CWV increases on both a synoptic-scale time period and a subsequent shorter time period consistent with mesoscale convective activity; the latter period is associated with the highest CWV levels. Probabilities of precipitation increase greatly with CWV. Given initial high CWV, this increased probability of precipitation persists at least 10–12 h. Even in periods of high CWV, however, probabilities of initial precipitation in a 5-min period remain low enough that there tends to be a lag before the start of the next precipitation event. This is consistent with precipitation occurring stochastically within environments containing high CWV, with the latter being established by a combination of synoptic-scale and mesoscale forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key strategy to improve the skill of quantitative predictions of precipitation, as well as hazardous weather such as severe thunderstorms and flash floods is to exploit the use of observations of convective activity (e.g. from radar). In this paper, a convection-permitting ensemble prediction system (EPS) aimed at addressing the problems of forecasting localized weather events with relatively short predictability time scale and based on a 1.5 km grid-length version of the Met Office Unified Model is presented. Particular attention is given to the impact of using predicted observations of radar-derived precipitation intensity in the ensemble transform Kalman filter (ETKF) used within the EPS. Our initial results based on the use of a 24-member ensemble of forecasts for two summer case studies show that the convective-scale EPS produces fairly reliable forecasts of temperature, horizontal winds and relative humidity at 1 h lead time, as evident from the inspection of rank histograms. On the other hand, the rank histograms seem also to show that the EPS generates too much spread for forecasts of (i) surface pressure and (ii) surface precipitation intensity. These may indicate that for (i) the value of surface pressure observation error standard deviation used to generate surface pressure rank histograms is too large and for (ii) may be the result of non-Gaussian precipitation observation errors. However, further investigations are needed to better understand these findings. Finally, the inclusion of predicted observations of precipitation from radar in the 24-member EPS considered in this paper does not seem to improve the 1-h lead time forecast skill.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two so-called “integrated” polarimetric rate estimation techniques, ZPHI (Testud et al., 2000) and ZZDR (Illingworth and Thompson, 2005), are evaluated using 12 episodes of the year 2005 observed by the French C-band operational Trappes radar, located near Paris. The term “integrated” means that the concentration parameter of the drop size distribution is assumed to be constant over some area and the algorithms retrieve it using the polarimetric variables in that area. The evaluation is carried out in ideal conditions (no partial beam blocking, no ground-clutter contamination, no bright band contamination, a posteriori calibration of the radar variables ZH and ZDR) using hourly rain gauges located at distances less than 60 km from the radar. Also included in the comparison, for the sake of benchmarking, is a conventional Z = 282R1.66 estimator, with and without attenuation correction and with and without adjustment by rain gauges as currently done operationally at Météo France. Under those ideal conditions, the two polarimetric algorithms, which rely solely on radar data, appear to perform as well if not better, pending on the measurements conditions (attenuation, rain rates, …), than the conventional algorithms, even when the latter take into account rain gauges through the adjustment scheme. ZZDR with attenuation correction is the best estimator for hourly rain gauge accumulations lower than 5 mm h−1 and ZPHI is the best one above that threshold. A perturbation analysis has been conducted to assess the sensitivity of the various estimators with respect to biases on ZH and ZDR, taking into account the typical accuracy and stability that can be reasonably achieved with modern operational radars these days (1 dB on ZH and 0.2 dB on ZDR). A +1 dB positive bias on ZH (radar too hot) results in a +14% overestimation of the rain rate with the conventional estimator used in this study (Z = 282R^1.66), a -19% underestimation with ZPHI and a +23% overestimation with ZZDR. Additionally, a +0.2 dB positive bias on ZDR results in a typical rain rate under- estimation of 15% by ZZDR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessment of changes in precipitation (P) as a function of percentiles of surface temperature (T) and 500 hPa vertical velocity (ω) are presented, considering present-day simulations and observational estimates from the Global Precipitation Climatology Project (GPCP) combined with the European Centre for Medium-range Weather Forecasts Interim reanalysis (ERA Interim). There is a tendency for models to overestimate P in the warm, subsiding regimes compared to GPCP, in some cases by more than 100%, while many models underestimate P in the moderate temperature regimes. Considering climate change projections between 1980–1999 and 2080–2099, responses in P are characterised by dP/dT ≥ 4%/K over the coldest 10–20% of land points and over warm, ascending ocean points while P declines over the warmest, descending regimes (dP/dT ∼ − 4%/K for model ensemble means). The reduced Walker circulation limits this contrasting dP/dT response in the tropical wet and dry regimes only marginally. Around 70% of the global surface area exhibits a consistent sign for dP/dT in at least 6 out of a 7-member model ensemble when considering P composites in terms of dynamic regime.