109 resultados para Order of the Brothers of the Sword.
Resumo:
The conquest of Normandy by Philip Augustus of France effectively ended the ‘Anglo-Norman’ realm created in 1066, forcing cross-Channel landholders to choose between their English and their Norman estates. The best source for the resulting tenurial upheaval in England is the Rotulus de valore terrarum Normannorum, a list of seized properties and their former holders, and this article seeks to expand our understanding of the impact of the loss of Normandy through a detailed analysis of this document. First, it demonstrates that the compilation of the roll can be divided into two distinct stages, the first containing valuations taken before royal justices in June 1204 and enrolled before the end of July, and the second consisting of returns to orders for the valuation of particular properties issued during the summer and autumn, as part of the process by which these estates were committed to new holders. Second, study of the roll and other documentary sources permits a better understanding of the order for the seizure of the lands of those who had remained in Normandy, the text of which does not survive. This establishes that this royal order was issued in late May 1204 and, further, that it enjoined the temporary seizure rather than the permanent confiscation of these lands. Moreover, the seizure was not retrospective and covers a specific window of time in 1204. On the one hand, this means that the roll is far from a comprehensive record of terre Normannorum. On the other hand, it is possible to correlate the identities of those Anglo-Norman landholders whose English estates were seized with the military progress of the French king through the duchy in May and June and thus shed new light on the campaign of 1204. Third, the article considers the initial management of the seized estates and highlights the fact that, when making arrangements for the these lands, John was primarily concerned to maintain his freedom of manoeuvre, since he was not prepared to accept that Normandy had been lost for good.
Resumo:
This paper describes time-resolved x-ray diffraction data monitoring the transformation of one inverse bicontinuous cubic mesophase into another, in a hydrated lipid system. The first section of the paper describes a mechanism for the transformation that conserves the topology of the bilayer, based on the work of Charvolin and Sadoc, Fogden and Hyde, and Benedicto and O'Brien in this area. We show a pictorial representation of this mechanism, in terms of both the water channels and the lipid bilayer. The second section describes the experimental results obtained. The system under investigation was 2:1 lauric acid: dilauroylphosphatidylcholine at a hydration of 50% water by weight. A pressure-jump was used to induce a phase transition from the gyroid (Q(II)(G)) to the diamond (Q(II)(D)) bicontinuous cubic mesophase, which was monitored by time-resolved x-ray diffraction. The lattice parameter of both mesophases was found to decrease slightly throughout the transformation, but at the stage where the Q(II)(D) phase first appeared, the ratio of lattice parameters of the two phases was found to be approximately constant for all pressure-jump experiments. The value is consistent with a topology-preserving mechanism. However, the polydomain nature of our sample prevents us from confirming that the specific pathway is that described in the first section of the paper. Our data also reveal signals from two different intermediate structures, one of which we have identified as the inverse hexagonal (H-II) mesophase. We suggest that it plays a role in the transfer of water during the transformation. The rate of the phase transition was found to increase with both temperature and pressure-jump amplitude, and its time scale varied from the order of seconds to minutes, depending on the conditions employed.
Resumo:
The scarcity and stochastic nature of genetic mutations presents a significant challenge for scientists seeking to characterise de novo mutation frequency at specific loci. Such mutations can be particularly numerous during regeneration of plants from in vitro culture and can undermine the value of germplasm conservation efforts. We used cleaved amplified polymorphic sequence (CAPS) analysis to characterise new mutations amongst a clonal population of cocoa plants regenerated via a somatic embryogenesis protocol used previously for cocoa cryopreservation. Efficacy of the CAPS system for mutation detection was greatly improved after an ‘a priori’ in silico screen of reference target sequences for actual and potential restriction enzyme recognition sites using a new freely available software called Artbio. Artbio surveys known sequences for existing restriction enzyme recognition sites but also identifies all single nucleotide polymorphism (SNP) deviations from such motifs. Using this software, we performed an in silico screen of seven loci for restriction sites and their potential mutant SNP variants that were possible from 21 restriction enzymes. The four most informative locus-enzyme combinations were then used to survey the regenerant populations for de novo mutants. We characterised the pattern of point mutations and, using the outputs of Artbio, calculated the ratio of base substitution in 114 somatic embryo-derived cocoa regenerants originating from two explant genotypes. We found 49 polymorphisms, comprising 26.3% of the samples screened, with an inferred rate of 2.8 × 10−3 substitutions/screened base. This elevated rate is of a similar order of magnitude to previous reports of de novo microsatellite length mutations arising in the crop and suggests caution should be exercised when applying somatic embryogenesis for the conservation of plant germplasm.
Resumo:
In this paper,the Prony's method is applied to the time-domain waveform data modelling in the presence of noise.The following three problems encountered in this work are studied:(1)determination of the order of waveform;(2)de-termination of numbers of multiple roots;(3)determination of the residues.The methods of solving these problems are given and simulated on the computer.Finally,an output pulse of model PG-10N signal generator and the distorted waveform obtained by transmitting the pulse above mentioned through a piece of coaxial cable are modelled,and satisfactory results are obtained.So the effectiveness of Prony's method in waveform data modelling in the presence of noise is confirmed.
Resumo:
Emergency vehicles use high-amplitude sirens to warn pedestrians and other road users of their presence. Unfortunately, the siren noise enters the vehicle and corrupts the intelligibility of two-way radio voice com-munications from the emergency vehicle to a control room. Often the siren has to be turned off to enable the control room to hear what is being said which subsequently endangers people's lives. A digital signal processing (DSP) based system for the cancellation of siren noise embedded within speech is presented. The system has been tested with the least mean square (LMS), normalised least mean square (NLMS) and affine projection algorithm (APA) using recordings from three common types of sirens (two-tone, wail and yelp) from actual test vehicles. It was found that the APA with a projection order of 2 gives comparably improved cancellation over the LMS and NLMS with only a moderate increase in algorithm complexity and code size. Therefore, this siren noise cancellation system using the APA offers an improvement in cancellation achieved by previous systems. The removal of the siren noise improves the response time for the emergency vehicle and thus the system can contribute to saving lives. The system also allows voice communication to take place even when the siren is on and as such the vehicle offers less risk of danger when moving at high speeds in heavy traffic.
Resumo:
Large magnitude explosive eruptions are the result of the rapid and large-scale transport of silicic magma stored in the Earth's crust, but the mechanics of erupting teratonnes of silicic magma remain poorly understood. Here, we demonstrate that the combined effect of local crustal extension and magma chamber overpressure can sustain linear dyke-fed explosive eruptions with mass fluxes in excess of 10^10 kg/s from shallow-seated (4–6 km depth) chambers during moderate extensional stresses. Early eruption column collapse is facilitated with eruption duration of the order of few days with an intensity of at least one order of magnitude greater than the largest eruptions in the 20th century. The conditions explored in this study are one way in which high mass eruption rates can be achieved to feed large explosive eruptions. Our results corroborate geological and volcanological evidences from volcano-tectonic complexes such as the Sierra Madre Occidental (Mexico) and the Taupo Volcanic Zone (New Zealand).
Resumo:
In this paper we examine the order of integration of EuroSterling interest rates by employing techniques that can allow for a structural break under the null and/or alternative hypothesis of the unit-root tests. In light of these results, we investigate the cointegrating relationship implied by the single, linear expectations hypothesis of the term structure of interest rates employing two techniques, one of which allows for the possibility of a break in the mean of the cointegrating relationship. The aim of the paper is to investigate whether or not the interest rate series can be viewed as I(1) processes and furthermore, to consider whether there has been a structural break in the series. We also determine whether, if we allow for a break in the cointegration analysis, the results are consistent with those obtained when a break is not allowed for. The main results reported in this paper support the conjecture that the ‘short’ Euro-currency rates are characterised as I(1) series that exhibit a structural break on or near Black Wednesday, 16 September 1992, whereas the ‘long’ rates are I(1) series that do not support the presence of a structural break. The evidence from the cointegration analysis suggests that tests of the expectations hypothesis based on data sets that include the ERM crisis period, or a period that includes a structural break, might be problematic if the structural break is not explicitly taken into account in the testing framework.
Resumo:
The high complexity of cloud parameterizations now held in models puts more pressure on observational studies to provide useful means to evaluate them. One approach to the problem put forth in the modelling community is to evaluate under what atmospheric conditions the parameterizations fail to simulate the cloud properties and under what conditions they do a good job. It is the ambition of this paper to characterize the variability of the statistical properties of tropical ice clouds in different tropical "regimes" recently identified in the literature to aid the development of better process-oriented parameterizations in models. For this purpose, the statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden-Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The vertical variability of ice cloud occurrence and microphysical properties is largest in all regimes (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98 % of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). In the ice part of the troposphere three distinct layers characterized by different statistically-dominant microphysical processes are identified. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is large, producing mean differences of up to a factor 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes and mean differences of a factor 2 typically in all microphysical properties. Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (weak diurnal amplitude) to values in excess of 2.0 (very large diurnal amplitude). Modellers should now use these results to check if their model cloud parameterizations are capable of translating a given atmospheric forcing into the correct statistical ice cloud properties.
Resumo:
We describe the HadGEM2 family of climate configurations of the Met Office Unified Model, MetUM. The concept of a model "family" comprises a range of specific model configurations incorporating different levels of complexity but with a common physical framework. The HadGEM2 family of configurations includes atmosphere and ocean components, with and without a vertical extension to include a well-resolved stratosphere, and an Earth-System (ES) component which includes dynamic vegetation, ocean biology and atmospheric chemistry. The HadGEM2 physical model includes improvements designed to address specific systematic errors encountered in the previous climate configuration, HadGEM1, namely Northern Hemisphere continental temperature biases and tropical sea surface temperature biases and poor variability. Targeting these biases was crucial in order that the ES configuration could represent important biogeochemical climate feedbacks. Detailed descriptions and evaluations of particular HadGEM2 family members are included in a number of other publications, and the discussion here is limited to a summary of the overall performance using a set of model metrics which compare the way in which the various configurations simulate present-day climate and its variability.
Resumo:
Meadowsweet was extracted in water at a range of temperatures (60–100 °C), and the total phenols, tannins, quercetin, salicylic acid content and colour were analysed. The extraction of total phenols followed pseudo first-order kinetics, the rate constant (k) increased from 0.09 ± 0.02 min−1 to 0.44 ± 0.09 min−1, as the temperature increased from 60 to 100 °C. An increase in temperature from 60 to 100 °C increased the concentration of total phenols extracted from 39 ± 2 to 63 ± 3 mg g−1 gallic acid equivalents, although it did not significantly affect the proportion of tannin and non-tannin fractions. The extraction of quercetin and salicyclic acid from meadowsweet also followed pseudo first-order kinetics, the rate constant of both compounds increasing with an increase in temperature up until 90 °C. Therefore, the aqueous extraction of meadowsweet at temperatures at or above 90 °C for 15 min yields extracts high in phenols, which may be added to beverages.
Resumo:
Vibrational circular dichroism is a powerful technique to study the stereochemistry of chiral molecules, but often suffers from small signal intensities. Electrochemical modulation of the energies of the electronically excited state manifold is now demonstrated to lead to an order of magnitude enhancement of the differential absorption. Quantum-chemical calculations show that increased mixing between ground and excited states is at the origin of this amplification.
Resumo:
A series of methacrylate-based side-chain liquid crystal polymers has been prepared with a range of molecular weights. For the high molecular weight polymers a smectic phase is observed with a very narrow nematic range; however, for low molecular weight polymers only the nematic phase is observed. A marked reduction in the glass transition temperature, TSN and TNI is observed with a reduction in the molecular weight. The orientational order parameters for these polymers in the liquid crystal phase have been determined using infra-red dichroism. It is found that the higher the molecular weight of the polymer, the greater is the threshold voltage of the electro-optic response and the lower the order parameter. The increase in the threshold voltage with increasing molecular weight may be related to the intrinsic curvature elasticity and hence to the coupling between the mesogenic units and the polymer backbone.
Resumo:
The influence of cross-linking on the phase behaviour of a series of side-chain liquid crystalline elastomers has been studied. For samples cross-linked in the temperature range corresponding to the nematic phase, the phase transition was shifted compared to that observed when an identical sample was cross-linked in the isotropic phase. This shift represented a stabilisation of the nematic phase in the former case, in line with theoretical expectations. By utilising a novel, slow cross-linking method, which allows the polymer backbone to take up an equilibrium conformation prior to network formation, it proved possible to monitor the shifts in phase transition temperature as a function of the length of the methylene chain coupling the mesogenic units to the polymer backbone. The results obtained are related to the backbone anisotropy and indicate that the level of orientational order of the polymer in the nematic phase backbone increases with a reduction in the length of the coupling chain.
Resumo:
Along the lines of the nonlinear response theory developed by Ruelle, in a previous paper we have proved under rather general conditions that Kramers-Kronig dispersion relations and sum rules apply for a class of susceptibilities describing at any order of perturbation the response of Axiom A non equilibrium steady state systems to weak monochromatic forcings. We present here the first evidence of the validity of these integral relations for the linear and the second harmonic response for the perturbed Lorenz 63 system, by showing that numerical simulations agree up to high degree of accuracy with the theoretical predictions. Some new theoretical results, showing how to derive asymptotic behaviors and how to obtain recursively harmonic generation susceptibilities for general observables, are also presented. Our findings confirm the conceptual validity of the nonlinear response theory, suggest that the theory can be extended for more general non equilibrium steady state systems, and shed new light on the applicability of very general tools, based only upon the principle of causality, for diagnosing the behavior of perturbed chaotic systems and reconstructing their output signals, in situations where the fluctuation-dissipation relation is not of great help.
Resumo:
In this paper the authors exploit two equivalent formulations of the average rate of material entropy production in the climate system to propose an approximate splitting between contributions due to vertical and eminently horizontal processes. This approach is based only on 2D radiative fields at the surface and at the top of atmosphere. Using 2D fields at the top of atmosphere alone, lower bounds to the rate of material entropy production and to the intensity of the Lorenz energy cycle are derived. By introducing a measure of the efficiency of the planetary system with respect to horizontal thermodynamic processes, it is possible to gain insight into a previous intuition on the possibility of defining a baroclinic heat engine extracting work from the meridional heat flux. The approximate formula of the material entropy production is verified and used for studying the global thermodynamic properties of climate models (CMs) included in the Program for Climate Model Diagnosis and Intercomparison (PCMDI)/phase 3 of the Coupled Model Intercomparison Project (CMIP3) dataset in preindustrial climate conditions. It is found that about 90% of the material entropy production is due to vertical processes such as convection, whereas the large-scale meridional heat transport contributes to only about 10% of the total. This suggests that the traditional two-box models used for providing a minimal representation of entropy production in planetary systems are not appropriate, whereas a basic—but conceptually correct—description can be framed in terms of a four-box model. The total material entropy production is typically 55 mW m−2 K−1, with discrepancies on the order of 5%, and CMs’ baroclinic efficiencies are clustered around 0.055. The lower bounds on the intensity of the Lorenz energy cycle featured by CMs are found to be around 1.0–1.5 W m−2, which implies that the derived inequality is rather stringent. When looking at the variability and covariability of the considered thermodynamic quantities, the agreement among CMs is worse, suggesting that the description of feedbacks is more uncertain. The contributions to material entropy production from vertical and horizontal processes are positively correlated, so that no compensation mechanism seems in place. Quite consistently among CMs, the variability of the efficiency of the system is a better proxy for variability of the entropy production due to horizontal processes than that of the large-scale heat flux. The possibility of providing constraints on the 3D dynamics of the fluid envelope based only on 2D observations of radiative fluxes seems promising for the observational study of planets and for testing numerical models.