48 resultados para Order of magnitude
Resumo:
Numerical models of the atmosphere combine a dynamical core, which approximates solutions to the adiabatic, frictionless governing equations for fluid dynamics, with tendencies arising from the parametrization of other physical processes. Since potential vorticity (PV) is conserved following fluid flow in adiabatic, frictionless circumstances, it is possible to isolate the effects of non-conservative processes by accumulating PV changes in an air-mass relative framework. This “PV tracer technique” is used to accumulate separately the effects on PV of each of the different non-conservative processes represented in a numerical model of the atmosphere. Dynamical cores are not exactly conservative because they introduce, explicitly or implicitly, some level of dissipation and adjustment of prognostic model variables which acts to modify PV. Here, the PV tracers technique is extended to diagnose the cumulative effect of the non-conservation of PV by a dynamical core and its characteristics relative to the PV modification by parametrized physical processes. Quantification using the Met Office Unified Model reveals that the magnitude of the non-conservation of PV by the dynamical core is comparable to those from physical processes. Moreover, the residual of the PV budget, when tracing the effects of the dynamical core and physical processes, is at least an order of magnitude smaller than the PV tracers associated with the most active physical processes. The implication of this work is that the non-conservation of PV by a dynamical core can be assessed in case studies with a full suite of physics parametrizations and directly compared with the PV modification by parametrized physical processes. The nonconservation of PV by the dynamical core is shown to move the position of the extratropical tropopause while the parametrized physical processes have a lesser effect at the tropopause level.
Resumo:
New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.
Resumo:
This article contains raw and processed data related to research published by Bryant et al. [1]. Data was obtained by MS-based proteomics, analysing trichome-enriched, trichome-depleted and whole leaf samples taken from the medicinal plant Artemisia annua and searching the acquired MS/MS data against a recently published contig database [2] and other genomic and proteomic sequence databases for comparison. The processed data shows that an order-of-magnitude more proteins have been identified from trichome-enriched Artemisia annua samples in comparison to previously published data. Proteins known to have a role in the biosynthesis of artemisinin and other highly abundant proteins were found which imply additional enzymatically driven processes occurring within the trichomes that are significant for the biosynthesis of artemisinin.