71 resultados para Olive.
Resumo:
Eighty-eight multiparous sows were used to evaluate whether type and timing of oil supplementation during gestation influences the incidence of low birth weight (LBW). Sows were allocated (eight per treatment) commercial sow pellets (3 kg/d; control diet) or an experimental diet consisting of control diet plus 10 % extra energy in the form of excess pellets, palm oil, olive oil (OO), sunflower oil (SO) or fish oil; experimental diets were fed during either the first half (G1) or second half (G2) of gestation. Growth performance and endocrine profile of LBW ( < 1·09 kg) and normal birth weight (NBW; 1·46–1·64 kg) offspring were compared. Maternal dietary supplementation altered the distribution curve for piglet birth weight. SOG1 sows had a greater proportion of LBW piglets (P < 0·05), whilst it was reduced in the OOG1 group (P < 0·05). Growth rate of LBW piglets was lower compared with their NBW siblings (P < 0·05) when dietary supplementation was offered in G2 but were similar for G1. At birth, LBW offspring of supplemented animals possessed more fat compared with the control group (P < 0·05); LBW offspring of control animals exhibited a more rapid decline in fat free mass/kg prior to weaning. Plasma metabolites and insulin concentrations were influenced by maternal diet and birth weight. In conclusion, maternal dietary supplementation altered the distribution of piglet birth weights and improved the energy status of LBW piglets. Supplementation with MUFA during G1 reduced the incidence of LBW, whereas PUFA had the reverse effect.
Resumo:
Mediterranean landscapes comprise a complex mosaic of different habitats that vary in the diversity of their floral communities, pollinator communities and pollination services. Using the Greek Island of Lesvos as a model system, we assess the biodiversity value of six common habitats and measure ecosystemic 'health' using pollen grain deposition in three core flowering plants as a measure of pollination services. Three fire-driven habitats were assessed: freshly burnt areas, fully regenerated pine forests and intermediate age scrub; in addition we examined oak woodlands, actively managed olive groves and groves that had been abandoned from agriculture. Oak woodlands, pine forests and managed olive groves had the highest diversity of bees. The habitat characteristics responsible for structuring bee communities were: floral diversity, floral abundance, nectar energy availability and the variety of nectar resources present. Pollination services in two of our plant species, which were pollinated by a limited sub-set of the pollinator community, indicated that pollination levels were highest in the burnt and mature pine habitats. The third species, which was open to all flower visitors, indicated that oak woodlands had the highest levels of pollination from generalist species. Pollination was always more effective in managed olive groves than in abandoned groves. However, the two most common species of bee, the honeybee and a bumblebee, were not the primary pollinators within these habitats. We conclude that the three habitats of greatest overall value for plant-pollinator communities and provision of the healthiest pollination services are pine forests, oak woodland and managed olive groves. We indicate how the highest value habitats may be maintained in a complex landscape to safeguard and enhance pollination function within these habitats and potentially in adjoining agricultural areas. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Consumption of oily fish and fish oils is associated with protection against cardiovascular disease. Paradoxically, long-chain polyunsaturated fatty acids present in low-density lipoprotein (LDL) are suggested to be susceptible to oxidation. It is not clear whether eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have similar effects on the susceptibility of LDL to oxidation or whether they affect the thrombogenicity of oxidized LDL. This study examined the influence of highly purified preparations of EPA and DHA on LDL oxidizability and LDL-supported thrombin generation in healthy human volunteers. Forty-two healthy volunteers were randomly assigned to receive olive oil (placebo), an EPA-rich oil or a DHA-rich oil for 4 weeks at a dose of 9 g oil/day. EPA and DHA were incorporated into LDL phospholipids and cholesteryl esters during the supplementation period, but were progressively lost during ex vivo copper-mediated oxidation. Following supplementation, the EPA treatment significantly increased the formation of conjugated dienes during LDL oxidation compared with baseline, whereas the DHA treatment had no effect. Neither treatment significantly affected the lag time for oxidation, oxidation rate during the propagation phase or maximum diene production. Neither EPA nor DHA significantly affected the thrombotic tendency of oxidized LDL compared with the placebo, although DHA tended to decrease it. In conclusion, there are subtle differences in the effects of EPA and DHA on the oxidizability and thrombogenicity of LDL. DHA does not appear to increase the susceptibility of LDL to oxidation to the same degree as EPA and has a tendency to decrease LDL-supported thrombin generation. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: The mechanisms involved in the increased mortality from coronary artery disease in British Indo-Asians are not well understood. Objectives: This study aimed to investigate whether British Indo-Asian Sikhs have higher plasma triacylglycerol concentrations, lower platelet phospholipid levels, and lower dietary intakes of long-chain n-3 polyunsaturated fatty acids (PUFAs) than do age- and weight-matched Europeans and whether moderate dietary fish-oil intake can reverse these differences. Design: A randomized, double-blind, placebo-controlled, parallel, fish-oil intervention study was performed. After a 2-wk run-in period, 44 Europeans and 40 Indo-Asian Sikhs were randomly assigned to receive either 4.0 g fish oil [1.5 g eicosapentaenoic acid (EPA) and 1.0 g docosahexaenoic acid (DHA)] or 4.0 g olive oil (control) daily for 12 wk. Results: At baseline, the Indo-Asians had significantly higher plasma triacylglycerol, small dense LDL, apolipoprotein B, and dietary and platelet phospholipid n-6 PUFA values and significantly lower long-chain n-3 PUFAs (EPA and DHA) than did the Europeans. A significant decrease in plasma triacylglycerol, plasma apolipoprotein B-48, and platelet phospholipid arachidonic acid concentrations and a significant increase in plasma HDL concentrations and platelet phospholipid EPA and DHA levels were observed after fish-oil supplementation. No significant effect of ethnicity on the responses to fish-oil supplementation was observed. Conclusions: Moderate fish-oil supplementation contributes to a reversal of lipid abnormalities and low n-3 PUFA levels in Indo-Asians and should be considered as an important, yet simple, dietary manipulation to reduce CAD risk in Indo-Asians with an atherogenic lipoprotein phenotype.
Resumo:
The antioxidant effects of beta-carotene, oil-soluble (bixin) and water-soluble (norbixin) annatto preparations and mixtures of these carotenoids with virgin olive oil polar extract were assessed in bulk olive oil and oil-in-water emulsions stored at 60degreesC. Norbixin was the only carotenoid that inhibited the oxidative deterioration of lipids in both systems. Though bixin and beta-carotene did not retard autoxidation, their mixtures with the polar extract from virgin olive oil enhanced the antioxidant effect of the olive oil extract. Norbixin (2 mM) was of similar activity to delta-tocopherol (0.1 mM) in stored oil. The combination of norbixin with ascorbic acid or ascorbyl palmitate in oil showed a reduction in formation of volatile oxidation products but not in peroxide value, compared with the analogous sample lacking norbixin. In olive oil-in-water emulsions, norbixin (2 mM) reduced hydroperoxide formation to a similar extent as delta-tocopherol (0.1 mM), which in turn was a better antioxidant than alpha-tocopherol. A synergistic effect between norbixin and ascorbic acid or ascorbyl palmitate was observed in the emulsion systems. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Background: Supplementation of the diet with fish oil, which is rich in the long-chain n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is reported to decrease several markers of immune function. However, whether EPA, DHA, or a combination of the 2 exerts these immunomodulatory effects is unclear. Objective: The objective of the study was to determine the effects of supplementation with an EPA-rich or DHA-rich oil on a range of immune outcomes representing key functions of human neutrophils, monocytes, and lymphocytes in healthy humans. Design: In a placebo-controlled, double-blind, parallel study, 42 healthy subjects were randomly allocated to receive supplementation with either placebo (olive oil), EPA (4.7 g/d), or DHA (4.9 g/d) for 4 wk. Blood samples were taken before and after supplementation. Results: The fatty acid composition of plasma phospholipids and neutrophils was dramatically altered by supplementation with EPA or DHA, and the effects of EPA differed notably from those of DHA. DHA supplementation decreased T lymphocyte activation, as assessed by expression of CD69, whereas EPA supplementation had no significant effect. Neither the EPA-rich oil nor the DHA-rich oil had any significant effect on monocyte or neutrophil phagocytosis or on cytokine production or adhesion molecule expression by peripheral blood mononuclear cells. Conclusions: Supplementation with DHA, but not with EPA, suppresses T lymphocyte activation, as assessed by expression of CD69. EPA alone does not, therefore, influence CD69 expression. No other marker of immune function assessed in this study was significantly affected by either EPA or - DHA.
Resumo:
Background: Although there is considerable interest in the postprandial events involved in the absorption of dietary fats and the subsequent metabolism of diet-derived triacylglycerol-rich lipoproteins, little is known about the effects of meal fatty acids on the composition of these particles. Objective: We examined the effect of meal fatty acids on the lipid and apolipoprotein contents of triacylglycerol-rich lipoproteins. Design: Ten normolipidemic men received in random order a mixed meal containing 50 L, of a mixture of palm oil and cocoa butter [rich in saturated fatty acids (SFAs)], safflower oil [n-6 polyunsaturated fatty acids (PUFAs)]. or olive oil [monounsaturated fatty acids (MUFAs)] on 3 occasions. Fasting and postprandial apolipoproteins B-48. B-100, E. C-II, and C-III and lipids (triacylglycerol and cholesterol) were measured in plasma fractions with Svedberg flotation rates (S-f) >400 S-f 60-400, and S-f 20 - 60. Results: Calculation of the composition of the triacylglycerol-rich lipoproteins (expressed per mole of apolipoprotein B) showed notable differences in the lipid and apolipoprotein contents of the SFA-enriched particles in the S-f > 400 and S-f 60-400 fractions. After the SFA meal, triacylglycerol-rich lipoproteins in these fractions showed significantly greater amounts of triacylglycerol and of apolipoproteins C-II (Sf 60-400 fraction only), C-III, and E than were found after the MUFA meal (P < 0.02) and more cholesterol, apolipoprotein C-III (Sf > 400 fraction only), and apolipoprotein E than after the PUFA meal (P < 0.02). Conclusions: Differences in the composition of S-f > 400 and S-f 60-400 triacylglycerol-rich lipoproteins formed after saturated compared with unsaturated fatty acid-rich meals may explain differences in the metabolic handling of dietary fats.
Resumo:
Extra virgin olive oil is rich in phenolic compounds which are believed to exert beneficial effects against many pathological processes, including the development of colon cancer. We show that one of the major polyphenolic constituents of extra virgin olive oil, hydroxytyrosol (HT), exerts strong anti-proliferative effects against human colon adenocarcinoma cells via its ability to induce a cell cycle block in G2/M. These antiproliferative effects were preceded by a strong inhibition of extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and a downstream reduction of cyclin D I expression, rather than by inhibition of p38 activity and cyclooxygenase-2 (COX-2) expression. These findings are of particular relevance due to the high colonic concentration of HT compared to the other olive oil polyphenols and may help explain the inverse link between colon cancer and olive oil consumption.
Resumo:
High doses of n-3 PUFA found in fish oils can reduce the circulating concentration of triacylglycerol (TG), which may contribute to the positive impact of these fatty acids on the risk of CVD. The present study aimed to establish the differential impact of EPA and docosahexaenoic (DHA) on plasma lipids and apo in adults. Forty-two normolipidaemic adult subjects completed a double-blind placebo controlled parallel study, receiving an EPA-rich oil (4.8 g EPA/d), DHA-rich oil (4.9 g DHA/d) or olive oil as control, for a period of 4 weeks. No effects of treatment on total cholesterol, LDL-cholesterol or HDL-cholesterol were evident. There was a significant 22% reduction in TG level relative to the control value following the DHA treatment (P=0.032), with the 15% decrease in the EPA group failing to reach significance (P=0-258). There were no significant inter-group differences in response to treatment for plasma apoA1, -C3 or -E levels, although a significant 15% within-group increase in apoE was evident in the EPA (P=0.006) and DHA (P=0.003) groups. In addition, a within-group decrease in the apoAI:HDL-cholesterol ratio was observed in the DHA group, suggesting a positive impact of DHA on HDL particle size. The DHA intervention resulted in a significant increase in the proportion of EPA P=0.000 and DHA P=0.000 in plasma phospholipids, whilst significant increases in EPA P=0.000 and docosapentacnoic acid P=0.002, but not DHA P=0.193, were evident following EPA supplementation (P<0.05). Our present results indicate that DHA may be more efficacious than EPA in improving the plasma lipid profile.
Resumo:
Orlistat is an anti-obesity treatment with which several gastrointestinal (GI) side-effects are commonly associated in the initial stages of therapy. There is no physiological explanation as to why two-thirds of those who take the drug experience one or more side-effects. It has been hypothesized that the GI microbiota may protect from or contribute to these GI disturbances. Using in vitro batch culture and human gut model systems, studies were conducted to determine whether increased availability of dietary lipids and/or orlistat affect the composition and/or activity of the faecal microbiota. Results from 24-h batch culture fermentation experiments demonstrated no effect of orlistat in the presence or absence of a dietary lipid (olive oil) on the composition of bacterial communities [as determined by fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) analyses], but did show there was great variability in the lipolytic activities of the microbiotas of individuals, as determined by gas chromatography analysis of long-chain fatty acids in samples. Subsequent studies focused on the effect of orlistat in the presence and absence of lipid in in vitro human gut model systems. Systems were run for 14 days with gut model medium (GMM) only (to steady state, SS), then fed at 12-h intervals with 50 mg orlistat, 2 g olive oil or a mixture of both for 14 days. FISH and DGGE were used to monitor changes in bacterial populations. Bacteria were cultivated from the GMM only (control) systems at SS. All strains isolated were screened for lipolytic activity using tributyrin agar. FISH and DGGE demonstrated that none of the compounds (singly or in combination) added to the systems had any notable effect on microbial population dynamics for any of the donors, although Subdoligranulum populations appeared to be inhibited by orlistat in the presence or absence of lipid. Orlistat had little or no effect on the metabolism of indigenous and added lipids in the fermentation systems, but there was great variability in the way the faecal microbiotas of the donors were able to degrade added lipids. Variability in lipid degradation could be correlated with the number and activity of isolated lipolytic bacteria. The mechanism by which orlistat and the GI microbiota cause side-effects in individuals is unknown, but several hypotheses have been proposed to account for their manifestation. The demonstration of great variability in the lipolytic activity of microbiotas to degrade lipids led to a large-scale cultivation-based study of lipolytic/lipase-positive bacteria present in the human faecal microbiota. Of 4,000 colonies isolated from 15 donors using five different agars, 378 strains were identified that had lipase activity. Molecular identification of strains isolated from five donors demonstrated that lipase activity is more prevalent in the human GI microbiota than previously thought, with members of the phyla Firmicutes, Bacteroidetes and Actinobacteria identified. Molecular identification and characterization of the substrate specificities of the strains will be carried out as part of ongoing work.
Resumo:
The olive oil polyphenol, hydroxytyrosol (HT), is believed to be capable of exerting protection against oxidative kidney injury. In this study we have investigated the ability of HT and its O-methylated metabolite, homovanillic alcohol (HVA) to protect renal cells against oxidative damage induced by hydrogen peroxide. We show that both compounds were capable of inhibiting hydrogen peroxide-induced kidney cell injury via an ability to interact with both MAP kinase and PI3 kinase signalling pathways, albeit at different concentrations. HT strongly inhibited death and prevented peroxide-induced increases in ERK1/2 and JNK1/2/3 phosphorylation at 0.3 microM, whilst HVA was effective at 10 microM. At similar concentrations, both compounds also prevented peroxide-induced reductions in Akt phosphorylation. We suggest that one potential protective effect exerted by olive oil polyphenols against oxidative kidney cell injury may be attributed to the interactions of HT and HVA with these important intracellular signalling pathways.
Resumo:
Fish-oil supplementation can reduce circulating triacylglycerol (TG) levels and cardiovascular risk. This study aimed to assess independent associations between changes in platelet eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and fasting and postprandial (PP) lipoprotein concentrations and LDL oxidation status, following fish-oil intervention. Fiftyfive mildly hypertriacylglycerolaemic (TG 1·5–4·0 mmol/l) men completed a double-blind placebo controlled cross over study, where individuals consumed 6 g fish oil (3 g EPA � DHA) or 6 g olive oil (placebo)/d for two 6-week intervention periods, with a 12-week wash-out period in between. Fish-oil intervention resulted in a significant increase in the platelet phospholipid EPA (+491 %, P,0·001) and DHA (+44 %, P,0·001) content and a significant decrease in the arachidonic acid (210 %, P,0·001) and g-linolenic acid (224 %, P,0·001) levels. A 30% increase in ex vivo LDL oxidation (P,0·001) was observed. In addition, fish oil resulted in a significant decrease in fasting and PP TG levels (P,0·001), PP non-esterified fatty acid (NEFA) levels, and in the percentage LDL as LDL-3 (P�0·040), and an increase in LDLcholesterol (P�0·027). In multivariate analysis, changes in platelet phospholipid DHA emerged as being independently associated with the rise in LDL-cholesterol, accounting for 16% of the variability in this outcome measure (P�0·030). In contrast, increases in platelet EPA were independently associated with the reductions in fasting (P�0·046) and PP TG (P�0·023), and PP NEFA (P�0·015), explaining 15–20% and 25% of the variability in response respectively. Increases in platelet EPA � DHA were independently and positively associated with the increase in LDL oxidation (P�0·011). EPA and DHA may have differential effects on plasma lipids in mildly hypertriacylglycerolaemic men.
Resumo:
The present study was designed to examine whether the type of fat ingested in an initial test meal influences the response and density distribution of dietary-derived lipoproteins in the Svedberg flotation rate (Sf)>400, Sf 60 - 400 and Sf 20 - 60 lipoprotein fractions. A single-blind randomized within-subject crossover design was used to study the effects of palm oil, safflower oil, a mixture of fish and safflower oil, and olive oil on postprandial apolipoprotein (apo) B-48, retinyl ester and triacylglycerol responses in each lipoprotein fraction following an initial test meal containing one of the oils and a second standardized test meal. For all dietary oils, late postprandial (300min) concentrations of triacylglycerol and apo B-48 were significantly higher in the Sf 60 - 400 fraction than in the Sf>400 fraction (P<0.02). Significantly greater apo B-48 incremental areas under the curve (IAUCs) were also observed in the Sf 60 - 400 fraction than in the Sf>400 fraction following palm oil, safflower oil and olive oil (P<0.04), with a similar non-significant trend for fish/safflower oil. Olive oil resulted in a significantly greater apo B-48 IAUC in the Sf>400 fraction (P<0.02) than did any of the other dietary oils, as well as a tendency for a higher IAUC in the Sf 60 - 400 fraction compared with the palm, safflower and fish/safflower oils. In conclusion, we have found that the majority of intestinally derived lipoproteins present in the circulation following meals enriched with saturated, polyunsaturated or monounsaturated fatty acids are of the density and size of small chylomicrons and chylomicron remnants. Olive oil resulted in a greater apo B-48 response compared with the other dietary oils following sequential test meals, suggesting the formation of a greater number of small (Sf 60 - 400) and large (Sf>400) apo B-48-containing lipoproteins in response to this dietary oil.
Resumo:
The study assessed the efficacy of fish oil supplementation in counteracting the classic dyslipidemia of the atherogenic lipoprotein phenotype (ALP). In addition, the impact of the common apolipoprotein E (apoE) polymorphism on the fasting and postprandial lipid profile and on responsiveness to the dietary intervention was established. Fifty-five ALP males (aged 34 to 69 years, body mass index 22 to 35 kg/m2, triglyceride [TG] levels 1.5 to 4.0 mmol/L, high density lipoprotein cholesterol [HDL-C] <1.1 mmol/l, and percent low density lipoprotein [LDL]-3 >40% total LDL) completed a randomized placebo-controlled crossover trial of fish oil (3.0 g eicosapentaenoic acid/docosahexaenoic acid per day) and placebo (olive oil) capsules with the 6-week treatment arms separated by a 12-week washout period. In addition to fasting blood samples, at the end of each intervention arm, a postprandial assessment of lipid metabolism was carried out. Fish oil supplementation resulted in a reduction in fasting TG level of 35% (P<0.001), in postprandial TG response of 26% (TG area under the curve, P<0.001), and in percent LDL-3 of 26% (P<0.05). However, no change in HDL-C levels was evident (P=0.752). ANCOVA showed that baseline HDL-C levels were significantly lower in apoE4 carriers (P=0.035). The apoE genotype also had a striking impact on lipid responses to fish oil intervention. Individuals with an apoE2 allele displayed a marked reduction in postprandial incremental TG response (TG incremental area under the curve, P=0.023) and a trend toward an increase in lipoprotein lipase activity relative to non-E2 carriers. In apoE4 individuals, a significant increase in total cholesterol and a trend toward a reduction in HDL-C relative to the common homozygous E3/E3 profile was evident. Our data demonstrate the efficacy of fish oil fatty acids in counteracting the proatherogenic lipid profile of the ALP but also that the apoE genotype influences responsiveness to this dietary treatment.
Resumo:
Postprandial lipaemic responses to two test meals were investigated in 30 Northern (15 British and 15 Irish), and 30 Southern (Greeks from Crete) healthy male Europeans. The meals were a saturated fatty acid (SFA) meal, which resembled the fatty acid composition of an average UK diet, and a monounsaturated fatty acid (MUFA) meal in which the fat consisted of olive oil. Habitual diets of the two groups differed, with higher total fat, (P < 0.03) and MUFA (P < 0.0001) and lower polyunsaturated fatty acid (PUFA) (P < 0.0001) intakes in Southern than Northern Europeans. Levels of total MUFA (P < 0.02) and oleic acid (P < 0.004) were also higher in adipose tissue of Southern in comparison to Northern Europeans. In both European groups there were no significant differences in postprandial triglyceride response between the two meal types, SFA or MUFA. However, Northern and Southern Europeans showed significant differences in their patterns of postprandial response in plasma triglycerides (P < 0.0001), apolipoprotein B-48 (P < 0.0001), NEFA (P < 0.0001), insulin (P < 0.0007), and factor VII activity (P-0.03). In the case of NEFA, areas under the response curve were higher following the SFA than the MUFA meal for both groups, (P < 0.003) and were greater in Southern than Northern Europeans (P < 0.002) and apo B-48 responses were lower (P < 0.005). Some of these differences may reflect differences in fasting levels since fasting apolipoprotein B-48 levels were lower (P < 0.01) and fasting NEFA (P < 0.02) and insulin (P < 0.005) were higher in the Southern than in the Northern Europeans. In addition, 9 h postprandial post-heparin lipoprotein lipase activity was lower in the Southern than in the Northern Europeans (P < 0.0006). This is the first report of differences in postprandial lipid, factor VII and insulin responses in Southern and Northern Europeans which may be of importance in explaining the different susceptibilities of these two populations to risk of coronary artery disease.