56 resultados para Observation.
Resumo:
The optimal utilisation of hyper-spectral satellite observations in numerical weather prediction is often inhibited by incorrectly assuming independent interchannel observation errors. However, in order to represent these observation-error covariance structures, an accurate knowledge of the true variances and correlations is needed. This structure is likely to vary with observation type and assimilation system. The work in this article presents the initial results for the estimation of IASI interchannel observation-error correlations when the data are processed in the Met Office one-dimensional (1D-Var) and four-dimensional (4D-Var) variational assimilation systems. The method used to calculate the observation errors is a post-analysis diagnostic which utilises the background and analysis departures from the two systems. The results show significant differences in the source and structure of the observation errors when processed in the two different assimilation systems, but also highlight some common features. When the observations are processed in 1D-Var, the diagnosed error variances are approximately half the size of the error variances used in the current operational system and are very close in size to the instrument noise, suggesting that this is the main source of error. The errors contain no consistent correlations, with the exception of a handful of spectrally close channels. When the observations are processed in 4D-Var, we again find that the observation errors are being overestimated operationally, but the overestimation is significantly larger for many channels. In contrast to 1D-Var, the diagnosed error variances are often larger than the instrument noise in 4D-Var. It is postulated that horizontal errors of representation, not seen in 1D-Var, are a significant contributor to the overall error here. Finally, observation errors diagnosed from 4D-Var are found to contain strong, consistent correlation structures for channels sensitive to water vapour and surface properties.
Resumo:
We review the theory and observations related to the "superhump" precession of eccentric accretion discs in close binary systems. We agree with earlier work, although for different reasons, that the discrepancy between observation and dynamical theory implies that the effect of pressure in the disc cannot be neglected. We extend earlier work that investigates this effect to include the correct expression for the radius at which resonant orbits occur. Using analytic expressions for the accretion disc structure, we derive a relationship between the period excess and mass ratio with the pressure effects included. This is compared to the observed data, recently derived results for detailed integration of the disc equations and the equivalent empirically derived relations and used to predict values for the mass ratio based on measured values of the period excess for 88 systems.
Resumo:
Data assimilation methods which avoid the assumption of Gaussian error statistics are being developed for geoscience applications. We investigate how the relaxation of the Gaussian assumption affects the impact observations have within the assimilation process. The effect of non-Gaussian observation error (described by the likelihood) is compared to previously published work studying the effect of a non-Gaussian prior. The observation impact is measured in three ways: the sensitivity of the analysis to the observations, the mutual information, and the relative entropy. These three measures have all been studied in the case of Gaussian data assimilation and, in this case, have a known analytical form. It is shown that the analysis sensitivity can also be derived analytically when at least one of the prior or likelihood is Gaussian. This derivation shows an interesting asymmetry in the relationship between analysis sensitivity and analysis error covariance when the two different sources of non-Gaussian structure are considered (likelihood vs. prior). This is illustrated for a simple scalar case and used to infer the effect of the non-Gaussian structure on mutual information and relative entropy, which are more natural choices of metric in non-Gaussian data assimilation. It is concluded that approximating non-Gaussian error distributions as Gaussian can give significantly erroneous estimates of observation impact. The degree of the error depends not only on the nature of the non-Gaussian structure, but also on the metric used to measure the observation impact and the source of the non-Gaussian structure.
Resumo:
For certain observing types, such as those that are remotely sensed, the observation errors are correlated and these correlations are state- and time-dependent. In this work, we develop a method for diagnosing and incorporating spatially correlated and time-dependent observation error in an ensemble data assimilation system. The method combines an ensemble transform Kalman filter with a method that uses statistical averages of background and analysis innovations to provide an estimate of the observation error covariance matrix. To evaluate the performance of the method, we perform identical twin experiments using the Lorenz ’96 and Kuramoto-Sivashinsky models. Using our approach, a good approximation to the true observation error covariance can be recovered in cases where the initial estimate of the error covariance is incorrect. Spatial observation error covariances where the length scale of the true covariance changes slowly in time can also be captured. We find that using the estimated correlated observation error in the assimilation improves the analysis.
Resumo:
Many human behaviours and pathologies have been attributed to the putative mirror neuron system, a neural system that is active during both the observation and execution of actions. While there are now a very large number of papers on the mirror neuron system, variations in the methods and analyses employed by researchers mean that the basic characteristics of the mirror response are not clear. This review focuses on three important aspects of the mirror response, as measured by modulations in corticospinal excitability: (1) muscle specificity, (2) direction, and (3) timing of modulation. We focus mainly on electromyographic (EMG) data gathered following single-pulse transcranial magnetic stimulation (TMS), because this method provides precise information regarding these three aspects of the response. Data from paired-pulse TMS paradigms and peripheral nerve stimulation (PNS) are also considered when we discuss the possible mechanisms underlying the mirror response. In this systematic review of the literature, we examine the findings of 85 TMS and PNS studies of the human mirror response, and consider the limitations and advantages of the different methodological approaches these have adopted in relation to discrepancies between their findings. We conclude by proposing a testable model of how action observation modulates corticospinal excitability in humans. Specifically, we propose that action observation elicits an early, non-specific facilitation of corticospinal excitability (at around 90 ms from action onset), followed by a later modulation of activity specific to the muscles involved in the observed action (from around 200 ms). Testing this model will greatly advance our understanding of the mirror mechanism and provide a more stable grounding on which to base inferences about its role in human behaviour.
Resumo:
The analysis step of the (ensemble) Kalman filter is optimal when (1) the distribution of the background is Gaussian, (2) state variables and observations are related via a linear operator, and (3) the observational error is of additive nature and has Gaussian distribution. When these conditions are largely violated, a pre-processing step known as Gaussian anamorphosis (GA) can be applied. The objective of this procedure is to obtain state variables and observations that better fulfil the Gaussianity conditions in some sense. In this work we analyse GA from a joint perspective, paying attention to the effects of transformations in the joint state variable/observation space. First, we study transformations for state variables and observations that are independent from each other. Then, we introduce a targeted joint transformation with the objective to obtain joint Gaussianity in the transformed space. We focus primarily in the univariate case, and briefly comment on the multivariate one. A key point of this paper is that, when (1)-(3) are violated, using the analysis step of the EnKF will not recover the exact posterior density in spite of any transformations one may perform. These transformations, however, provide approximations of different quality to the Bayesian solution of the problem. Using an example in which the Bayesian posterior can be analytically computed, we assess the quality of the analysis distributions generated after applying the EnKF analysis step in conjunction with different GA options. The value of the targeted joint transformation is particularly clear for the case when the prior is Gaussian, the marginal density for the observations is close to Gaussian, and the likelihood is a Gaussian mixture.
Resumo:
To improve the quantity and impact of observations used in data assimilation it is necessary to take into account the full, potentially correlated, observation error statistics. A number of methods for estimating correlated observation errors exist, but a popular method is a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. The accuracy of the results it yields is unknown as the diagnostic is sensitive to the difference between the exact background and exact observation error covariances and those that are chosen for use within the assimilation. It has often been stated in the literature that the results using this diagnostic are only valid when the background and observation error correlation length scales are well separated. Here we develop new theory relating to the diagnostic. For observations on a 1D periodic domain we are able to the show the effect of changes in the assumed error statistics used in the assimilation on the estimated observation error covariance matrix. We also provide bounds for the estimated observation error variance and eigenvalues of the estimated observation error correlation matrix. We demonstrate that it is still possible to obtain useful results from the diagnostic when the background and observation error length scales are similar. In general, our results suggest that when correlated observation errors are treated as uncorrelated in the assimilation, the diagnostic will underestimate the correlation length scale. We support our theoretical results with simple illustrative examples. These results have potential use for interpreting the derived covariances estimated using an operational system.
Resumo:
With the development of convection-permitting numerical weather prediction the efficient use of high resolution observations in data assimilation is becoming increasingly important. The operational assimilation of these observations, such as Dopplerradar radial winds, is now common, though to avoid violating the assumption of un- correlated observation errors the observation density is severely reduced. To improve the quantity of observations used and the impact that they have on the forecast will require the introduction of the full, potentially correlated, error statistics. In this work, observation error statistics are calculated for the Doppler radar radial winds that are assimilated into the Met Office high resolution UK model using a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. This is the first in-depth study using the diagnostic to estimate both horizontal and along-beam correlated observation errors. By considering the new results obtained it is found that the Doppler radar radial wind error standard deviations are similar to those used operationally and increase as the observation height increases. Surprisingly the estimated observation error correlation length scales are longer than the operational thinning distance. They are dependent on both the height of the observation and on the distance of the observation away from the radar. Further tests show that the long correlations cannot be attributed to the use of superobservations or the background error covariance matrix used in the assimilation. The large horizontal correlation length scales are, however, in part, a result of using a simplified observation operator.
Resumo:
The [Ru(phen)2(dppz)]2+ complex (1) is non-emissive in water but is highly luminescent in organic solvents or when bound to DNA, making it a useful probe for DNA binding. To date, a complete mechanistic explanation for this “light-switch” effect is still lacking. With this in mind we have undertaken an ultrafast time resolved infrared (TRIR) study of 1 and directly observe marker bands between 1280–1450 cm-1, which characterise both the emissive “bright” and the non-emissive “dark” excited states of the complex, in CD3CN and D2O respectively. These characteristic spectral features are present in the [Ru(dppz)3]2+ solvent light-switch complex but absent in [Ru(phen)3]2+, which is luminescent in both solvents. DFT calculations show that the vibrational modes responsible for these characteristic bands are predominantly localised on the dppz ligand. Moreover, they reveal that certain vibrational modes of the “dark” excited state couple with vibrational modes of two coordinating water molecules, and through these to the bulk solvent, thus providing a new insight into the mechanism of the light-switch effect. We also demonstrate that the marker bands for the “bright” state are observed for both L- and D enantiomers of 1 when bound to DNA and that photo-excitation of the complex induces perturbation of the guanine and cytosine carbonyl bands. This perturbation is shown to be stronger for the L enantiomer, demonstrating the different binding site properties of the two enantiomers and the ability of this technique to determine the identity and nature of the binding site of such intercalators.
Resumo:
This special issue is focused on the assessment of algorithms for the observation of Earth’s climate from environ- mental satellites. Climate data records derived by remote sensing are increasingly a key source of insight into the workings of and changes in Earth’s climate system. Producers of data sets must devote considerable effort and expertise to maximise the true climate signals in their products and minimise effects of data processing choices and changing sensors. A key choice is the selection of algorithm(s) for classification and/or retrieval of the climate variable. Within the European Space Agency Climate Change Initiative, science teams undertook systematic assessment of algorithms for a range of essential climate variables. The papers in the special issue report some of these exercises (for ocean colour, aerosol, ozone, greenhouse gases, clouds, soil moisture, sea surface temper- ature and glaciers). The contributions show that assessment exercises must be designed with care, considering issues such as the relative importance of different aspects of data quality (accuracy, precision, stability, sensitivity, coverage, etc.), the availability and degree of independence of validation data and the limitations of validation in characterising some important aspects of data (such as long-term stability or spatial coherence). As well as re- quiring a significant investment of expertise and effort, systematic comparisons are found to be highly valuable. They reveal the relative strengths and weaknesses of different algorithmic approaches under different observa- tional contexts, and help ensure that scientific conclusions drawn from climate data records are not influenced by observational artifacts, but are robust.
Resumo:
Self-report underpins our understanding of falls among people with Parkinson’s (PwP) as they largely happen unwitnessed at home. In this qualitative study, we used an ethnographic approach to investigate which in-home sensors, in which locations, could gather useful data about fall risk. Over six weeks, we observed five independently mobile PwP at high risk of falling, at home. We made field notes about falls (prior events and concerns) and recorded movement with video, Kinect, and wearable sensors. The three women and two men (aged 71 to 79 years) having moderate or severe Parkinson’s were dependent on others and highly sedentary. We most commonly noted balance protection, loss, and restoration during chair transfers, walks across open spaces and through gaps, turns, steps up and down, and tasks in standing (all evident walking between chair and stairs, e.g.). Our unobtrusive sensors were acceptable to participants: they could detect instability during everyday activity at home and potentially guide intervention. Monitoring the route between chair and stairs is likely to give information without invading the privacy of people at high risk of falling, with very limited mobility, who spend most of the day in their sitting rooms.