48 resultados para O157


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Escherichia coli O26 is recognized as an emerging pathogen associated with disease in both ruminants and humans. Compared to those of E. coli O157:117, the shedding pattern and location of E. coli O26 in the gastrointestinal tract (GIT) of ruminants are poorly understood. In the studies reported here, an stx-negative E. coli O26 strain of ovine origin was inoculated orally into 6-week-old lambs and the shedding pattern of the O26 strain was monitored by serial bacteriological examination of feces. The location of colonization in the GIT was examined at necropsy at two time points. The numbers of O26 organisms excreted in feces declined from approximately 10(7) to 10(4) CFU per gram of feces by day 7 and continued at this level for a further 3 weeks. Beyond day 30, excretion was from few animals, intermittent, and just above the detection limit. By day 38, all fecal samples were negative, but at necropsy, O26 organisms were recovered from the upper GIT, specifically the ileum. However, no attaching-effacing (AE) lesions were observed. To identify the location of E. coli O26 within the GIT early after inoculation, two lambs were examined postmortem, 4 days postinoculation. High numbers of O26 organisms were recovered from all GIT sites examined, and similar to 10(9) CFU were recovered from 1 gram of ileal tissue from one animal. Despite high numbers of O26 organisms, AE lesions were identified on the mucosa of the ascending colon of only one animal. These data indicate that E. coli O26 readily colonizes 6-week-old lambs, but the sparseness of AE lesions suggests that O26 is well adapted to this host, and mechanisms other than those dependent upon intimin may play a role in persistence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aims of the present study were to investigate in vitro the antimicrobial activity of Lactobacillus fermentum and Bifidobacterium longum, isolated from faeces of healthy elderly individuals, against enterohaemorrhagic Escherichia coli (E. coli O157:H7) and enteropathogenic E. coli (E. coli O86), to determine the capability of the selected strains to tolerate acid and bile in vitro, to select suitable carbohydrates in order to enhance the growth and maximise antimicrobial activity of the putative probiotic organisms and examine the adhesion properties of the synbiotics. Antimicrobial activity of the putative probiotics and synbiotics was investigated by a microtitre method using cell-free culture supernatants (CFCS). Results of the antimicrobial assay showed that both putative probiotic strains produced compounds at pH 5 that lead to higher lag phases of both E. coli O157:H7 and E. coli O86. When half the quantity of cell-free culture supernatants of both probiotic strains was used at pH 5, B. longum maintained the same antimicrobial effect against both strains of E. coli, whereas L. fermentum lead to a higher lag phase of E. coli O86 only. Neutralization of the culture supernatants with alkali reduced the antimicrobial effect with only cell-free supernatant of L. fermentum causing lower maximum growth rates of E. coli O157:H7 and E. coli O86. L. fermentum appeared to be acid tolerant whereas B. longum was more susceptible to acid and both isolates were bile tolerant. A short chain fructooligosaccharide (scFOS) and an isomalto-oligosaccharide (IMO) proved to be the most effective substrates, enhancing antimicrobial activity for L. fermentum and B. longum respectively. The adhesion of the synbiotic combinations showed that L. fermentum, exhibited higher percentage of adhesion when grown on glucose and as a synbiotic combination with scFOS whereas B. longum exhibited lowest percentage of adhesion when grown on both glucose and IMO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aims to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from naturally fermented olives and select candidates to be used as probiotic starters for the improvement of the traditional fermentation process and the production of newly added value functional foods. Seventy one (71) lactic acid bacterial strains (17 Leuconostoc mesenteroides, 1 Ln. pseudomesenteroides, 13 Lactobacillus plantarum, 37 Lb. pentosus, 1 Lb. paraplantarum, and 2 Lb. paracasei subsp. paracasei) isolated from table olives were screened for their probiotic potential. Lb. rhamnosus GG and Lb. casei Shirota were used as reference strains. The in vitro tests included survival in simulated gastrointestinal tract conditions, antimicrobial activity (against Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli O157:H7), Caco-2 surface adhesion, resistance to 9 antibiotics and haemolytic activity. Three (3) Lb. pentosus, 4 Lb. plantarum and 2 Lb. paracasei subsp. paracasei strains demonstrated the highest final population (>8 log cfu/ml) after 3 h of exposure at low pH. The majority of the tested strains were resistant to bile salts even after 4 h of exposure, while 5 Lb. plantarum and 7 Lb. pentosus strains exhibited partial bile salt hydrolase activity. None of the strains inhibited the growth of the pathogens tested. Variable efficiency to adhere to Caco-2 cells was observed. This was the same regarding strains' susceptibility towards different antibiotics. None of the strains exhibited β-haemolytic activity. As a whole, 4 strains of Lb. pentosus, 3 strains of Lb. plantarum and 2 strains of Lb. paracasei subsp. paracasei were found to possess desirable in vitro probiotic properties similar to or even better than the reference probiotic strains Lb. casei Shirota and Lb. rhamnosus GG. These strains are good candidates for further investigation both with in vivo studies to elucidate their potential health benefits and in olive fermentation processes to assess their technological performance as novel probiotic starters.