64 resultados para Non-linear functions


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The modelling of a nonlinear stochastic dynamical processes from data involves solving the problems of data gathering, preprocessing, model architecture selection, learning or adaptation, parametric evaluation and model validation. For a given model architecture such as associative memory networks, a common problem in non-linear modelling is the problem of "the curse of dimensionality". A series of complementary data based constructive identification schemes, mainly based on but not limited to an operating point dependent fuzzy models, are introduced in this paper with the aim to overcome the curse of dimensionality. These include (i) a mixture of experts algorithm based on a forward constrained regression algorithm; (ii) an inherent parsimonious delaunay input space partition based piecewise local lineal modelling concept; (iii) a neurofuzzy model constructive approach based on forward orthogonal least squares and optimal experimental design and finally (iv) the neurofuzzy model construction algorithm based on basis functions that are Bézier Bernstein polynomial functions and the additive decomposition. Illustrative examples demonstrate their applicability, showing that the final major hurdle in data based modelling has almost been removed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The hypothesis of a low dimensional martian climate attractor is investigated by the application of the proper orthogonal decomposition (POD) to a simulation of martian atmospheric circulation using the UK Mars general circulation model (UK-MGCM). In this article we focus on a time series of the interval between autumn and winter in the northern hemisphere, when baroclinic activity is intense. The POD is a statistical technique that allows the attribution of total energy (TE) to particular structures embedded in the UK-MGCM time-evolving circulation. These structures are called empirical orthogonal functions (EOFs). Ordering the EOFs according to their associated energy content, we were able to determine the necessary number to account for a chosen amount of atmospheric TE. We show that for Mars a large fraction of TE is explained by just a few EOFs (with 90% TE in 23 EOFs), which apparently support the initial hypothesis. We also show that the resulting EOFs represent classical types of atmospheric motion, such as thermal tides and transient waves. Thus, POD is shown to be an efficient method for the identification of different classes of atmospheric modes. It also provides insight into the non-linear interaction of these modes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A model structure comprising a wavelet network and a linear term is proposed for nonlinear system identification. It is shown that under certain conditions wavelets are orthogonal to linear functions and, as a result, the two parts of the model can be identified separately. The linear-wavelet model is compared to a standard wavelet network using data from a simulated fermentation process. The results show that the linear-wavelet model yields a smaller modelling error when compared to a wavelet network using the same number of regressors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ABSTRACT Non-Gaussian/non-linear data assimilation is becoming an increasingly important area of research in the Geosciences as the resolution and non-linearity of models are increased and more and more non-linear observation operators are being used. In this study, we look at the effect of relaxing the assumption of a Gaussian prior on the impact of observations within the data assimilation system. Three different measures of observation impact are studied: the sensitivity of the posterior mean to the observations, mutual information and relative entropy. The sensitivity of the posterior mean is derived analytically when the prior is modelled by a simplified Gaussian mixture and the observation errors are Gaussian. It is found that the sensitivity is a strong function of the value of the observation and proportional to the posterior variance. Similarly, relative entropy is found to be a strong function of the value of the observation. However, the errors in estimating these two measures using a Gaussian approximation to the prior can differ significantly. This hampers conclusions about the effect of the non-Gaussian prior on observation impact. Mutual information does not depend on the value of the observation and is seen to be close to its Gaussian approximation. These findings are illustrated with the particle filter applied to the Lorenz ’63 system. This article is concluded with a discussion of the appropriateness of these measures of observation impact for different situations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the forecasting performance of two SETAR exchange rate models proposed by Kräger and Kugler [J. Int. Money Fin. 12 (1993) 195]. Assuming that the models are good approximations to the data generating process, we show that whether the non-linearities inherent in the data can be exploited to forecast better than a random walk depends on both how forecast accuracy is assessed and on the ‘state of nature’. Evaluation based on traditional measures, such as (root) mean squared forecast errors, may mask the superiority of the non-linear models. Generalized impulse response functions are also calculated as a means of portraying the asymmetric response to shocks implied by such models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents and implements a number of tests for non-linear dependence and a test for chaos using transactions prices on three LIFFE futures contracts: the Short Sterling interest rate contract, the Long Gilt government bond contract, and the FTSE 100 stock index futures contract. While previous studies of high frequency futures market data use only those transactions which involve a price change, we use all of the transaction prices on these contracts whether they involve a price change or not. Our results indicate irrefutable evidence of non-linearity in two of the three contracts, although we find no evidence of a chaotic process in any of the series. We are also able to provide some indications of the effect of the duration of the trading day on the degree of non-linearity of the underlying contract. The trading day for the Long Gilt contract was extended in August 1994, and prior to this date there is no evidence of any structure in the return series. However, after the extension of the trading day we do find evidence of a non-linear return structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A number of tests for non-linear dependence in time series are presented and implemented on a set of 10 daily sterling exchange rates covering the entire post Bretton-Woods era until the present day. Irrefutable evidence of non-linearity is shown in many of the series, but most of this dependence can apparently be explained by reference to the GARCH family of models. It is suggested that the literature in this area has reached an impasse, with the presence of ARCH effects clearly demonstrated in a large number of papers, but with the tests for non-linearity which are currently available being unable to classify any additional non-linear structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

4-Dimensional Variational Data Assimilation (4DVAR) assimilates observations through the minimisation of a least-squares objective function, which is constrained by the model flow. We refer to 4DVAR as strong-constraint 4DVAR (sc4DVAR) in this thesis as it assumes the model is perfect. Relaxing this assumption gives rise to weak-constraint 4DVAR (wc4DVAR), leading to a different minimisation problem with more degrees of freedom. We consider two wc4DVAR formulations in this thesis, the model error formulation and state estimation formulation. The 4DVAR objective function is traditionally solved using gradient-based iterative methods. The principle method used in Numerical Weather Prediction today is the Gauss-Newton approach. This method introduces a linearised `inner-loop' objective function, which upon convergence, updates the solution of the non-linear `outer-loop' objective function. This requires many evaluations of the objective function and its gradient, which emphasises the importance of the Hessian. The eigenvalues and eigenvectors of the Hessian provide insight into the degree of convexity of the objective function, while also indicating the difficulty one may encounter while iterative solving 4DVAR. The condition number of the Hessian is an appropriate measure for the sensitivity of the problem to input data. The condition number can also indicate the rate of convergence and solution accuracy of the minimisation algorithm. This thesis investigates the sensitivity of the solution process minimising both wc4DVAR objective functions to the internal assimilation parameters composing the problem. We gain insight into these sensitivities by bounding the condition number of the Hessians of both objective functions. We also precondition the model error objective function and show improved convergence. We show that both formulations' sensitivities are related to error variance balance, assimilation window length and correlation length-scales using the bounds. We further demonstrate this through numerical experiments on the condition number and data assimilation experiments using linear and non-linear chaotic toy models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Satellite-based rainfall monitoring is widely used for climatological studies because of its full global coverage but it is also of great importance for operational purposes especially in areas such as Africa where there is a lack of ground-based rainfall data. Satellite rainfall estimates have enormous potential benefits as input to hydrological and agricultural models because of their real time availability, low cost and full spatial coverage. One issue that needs to be addressed is the uncertainty on these estimates. This is particularly important in assessing the likely errors on the output from non-linear models (rainfall-runoff or crop yield) which make use of the rainfall estimates, aggregated over an area, as input. Correct assessment of the uncertainty on the rainfall is non-trivial as it must take account of • the difference in spatial support of the satellite information and independent data used for calibration • uncertainties on the independent calibration data • the non-Gaussian distribution of rainfall amount • the spatial intermittency of rainfall • the spatial correlation of the rainfall field This paper describes a method for estimating the uncertainty on satellite-based rainfall values taking account of these factors. The method involves firstly a stochastic calibration which completely describes the probability of rainfall occurrence and the pdf of rainfall amount for a given satellite value, and secondly the generation of ensemble of rainfall fields based on the stochastic calibration but with the correct spatial correlation structure within each ensemble member. This is achieved by the use of geostatistical sequential simulation. The ensemble generated in this way may be used to estimate uncertainty at larger spatial scales. A case study of daily rainfall monitoring in the Gambia, west Africa for the purpose of crop yield forecasting is presented to illustrate the method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of Research Theme 4 (RT4) was to advance understanding of the basic science issues at the heart of the ENSEMBLES project, focusing on the key processes that govern climate variability and change, and that determine the predictability of climate. Particular attention was given to understanding linear and non-linear feedbacks that may lead to climate surprises,and to understanding the factors that govern the probability of extreme events. Improved understanding of these issues will contribute significantly to the quantification and reduction of uncertainty in seasonal to decadal predictions and projections of climate change. RT4 exploited the ENSEMBLES integrations (stream 1) performed in RT2A as well as undertaking its own experimentation to explore key processes within the climate system. It was working at the cutting edge of problems related to climate feedbacks, the interaction between climate variability and climate change � especially how climate change pertains to extreme events, and the predictability of the climate system on a range of time-scales. The statisticalmethodologies developed for extreme event analysis are new and state-of-the-art. The RT4-coordinated experiments, which have been conducted with six different atmospheric GCMs forced by common timeinvariant sea surface temperature (SST) and sea-ice fields (removing some sources of inter-model variability), are designed to help to understand model uncertainty (rather than scenario or initial condition uncertainty) in predictions of the response to greenhouse-gas-induced warming. RT4 links strongly with RT5 on the evaluation of the ENSEMBLES prediction system and feeds back its results to RT1 to guide improvements in the Earth system models and, through its research on predictability, to steer the development of methods for initialising the ensembles

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe numerical simulations designed to elucidate the role of mean ocean salinity in climate. Using a coupled atmosphere-ocean general circulation model, we study a 100-year sensitivity experiment in which the global-mean salinity is approximately doubled from its present observed value, by adding 35 psu everywhere in the ocean. The salinity increase produces a rapid global-mean sea-surface warming of C within a few years, caused by reduced vertical mixing associated with changes in cabbeling. The warming is followed by a gradual global-mean sea-surface cooling of C within a few decades, caused by an increase in the vertical (downward) component of the isopycnal diffusive heat flux. We find no evidence of impacts on the variability of the thermohaline circulation (THC) or El Niño/Southern Oscillation (ENSO). The mean strength of the Atlantic meridional overturning is reduced by 20% and the North Atlantic Deep Water penetrates less deeply. Nevertheless, our results dispute claims that higher salinities for the world ocean have profound consequences for the thermohaline circulation. In additional experiments with doubled atmospheric carbon dioxide, we find that the amplitude and spatial pattern of the global warming signal are modified in the hypersaline ocean. In particular, the equilibrated global-mean sea-surface temperature increase caused by doubling carbon dioxide is reduced by 10%. We infer the existence of a non-linear interaction between the climate responses to modified carbon dioxide and modified salinity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Moist singular vectors (MSV) have been applied successfully to predicting mid-latitude storms growing in association with latent heat of condensation. Tropical cyclone sensitivity has also been assessed. Extending this approach to more general tropical weather systems here, MSVs are evaluated for understanding and predicting African easterly waves, given the importance of moist processes in their development. First results, without initial moisture perturbations, suggest MSVs may be used advantageously. Perturbations bear similar structural and energy profiles to previous idealised non-linear studies and observations. Strong sensitivities prevail in the metrics and trajectories chosen, and benefits of initial moisture perturbations should be appraised. Copyright © 2009 Royal Meteorological Society

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of fluctuating daily surface fluxes on the time-mean oceanic circulation is studied using an empirical flux model. The model produces fluctuating fluxes resulting from atmospheric variability and includes oceanic feedbacks on the fluxes. Numerical experiments were carried out by driving an ocean general circulation model with three different versions of the empirical model. It is found that fluctuating daily fluxes lead to an increase in the meridional overturning circulation (MOC) of the Atlantic of about 1 Sv and a decrease in the Antarctic circumpolar current (ACC) of about 32 Sv. The changes are approximately 7% of the MOC and 16% of the ACC obtained without fluctuating daily fluxes. The fluctuating fluxes change the intensity and the depth of vertical mixing. This, in turn, changes the density field and thus the circulation. Fluctuating buoyancy fluxes change the vertical mixing in a non-linear way: they tend to increase the convective mixing in mostly stable regions and to decrease the convective mixing in mostly unstable regions. The ACC changes are related to the enhanced mixing in the subtropical and the mid-latitude Southern Ocean and reduced mixing in the high-latitude Southern Ocean. The enhanced mixing is related to an increase in the frequency and the depth of convective events. As these events bring more dense water downward, the mixing changes lead to a reduction in meridional gradient of the depth-integrated density in the Southern Ocean and hence the strength of the ACC. The MOC changes are related to more subtle density changes. It is found that the vertical mixing in a latitudinal strip in the northern North Atlantic is more strongly enhanced due to fluctuating fluxes than the mixing in a latitudinal strip in the South Atlantic. This leads to an increase in the density difference between the two strips, which can be responsible for the increase in the Atlantic MOC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitrogen oxide biogenic emissions from soils are driven by soil and environmental parameters. The relationship between these parameters and NO fluxes is highly non linear. A new algorithm, based on a neural network calculation, is used to reproduce the NO biogenic emissions linked to precipitations in the Sahel on the 6 August 2006 during the AMMA campaign. This algorithm has been coupled in the surface scheme of a coupled chemistry dynamics model (MesoNH Chemistry) to estimate the impact of the NO emissions on NOx and O3 formation in the lower troposphere for this particular episode. Four different simulations on the same domain and at the same period are compared: one with anthropogenic emissions only, one with soil NO emissions from a static inventory, at low time and space resolution, one with NO emissions from neural network, and one with NO from neural network plus lightning NOx. The influence of NOx from lightning is limited to the upper troposphere. The NO emission from soils calculated with neural network responds to changes in soil moisture giving enhanced emissions over the wetted soil, as observed by aircraft measurements after the passing of a convective system. The subsequent enhancement of NOx and ozone is limited to the lowest layers of the atmosphere in modelling, whereas measurements show higher concentrations above 1000 m. The neural network algorithm, applied in the Sahel region for one particular day of the wet season, allows an immediate response of fluxes to environmental parameters, unlike static emission inventories. Stewart et al (2008) is a companion paper to this one which looks at NOx and ozone concentrations in the boundary layer as measured on a research aircraft, examines how they vary with respect to the soil moisture, as indicated by surface temperature anomalies, and deduces NOx fluxes. In this current paper the model-derived results are compared to the observations and calculated fluxes presented by Stewart et al (2008).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Locality to other nodes on a peer-to-peer overlay network can be established by means of a set of landmarks shared among the participating nodes. Each node independently collects a set of latency measures to landmark nodes, which are used as a multi-dimensional feature vector. Each peer node uses the feature vector to generate a unique scalar index which is correlated to its topological locality. A popular dimensionality reduction technique is the space filling Hilbert’s curve, as it possesses good locality preserving properties. However, there exists little comparison between Hilbert’s curve and other techniques for dimensionality reduction. This work carries out a quantitative analysis of their properties. Linear and non-linear techniques for scaling the landmark vectors to a single dimension are investigated. Hilbert’s curve, Sammon’s mapping and Principal Component Analysis have been used to generate a 1d space with locality preserving properties. This work provides empirical evidence to support the use of Hilbert’s curve in the context of locality preservation when generating peer identifiers by means of landmark vector analysis. A comparative analysis is carried out with an artificial 2d network model and with a realistic network topology model with a typical power-law distribution of node connectivity in the Internet. Nearest neighbour analysis confirms Hilbert’s curve to be very effective in both artificial and realistic network topologies. Nevertheless, the results in the realistic network model show that there is scope for improvements and better techniques to preserve locality information are required.