61 resultados para Non-dominated sorting genetic algorithms
Resumo:
We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) of CO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving >80% success rate and mean NEE confidence intervals <110 gC m−2 year−1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence intervals on annual NEE increased by 30% when observed data were used instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would help to reduce uncertainties for model parameters poorly served by eddy covariance data.
Resumo:
Background. The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, porcine and human hosts, amongst others. To date, the only available genome sequence of B. pilosicoli is that of strain 95/1000, a porcine isolate. In the first intra-species genome comparison within the Brachyspira genus, we report the whole genome sequence of B. pilosicoli B2904, an avian isolate, the incomplete genome sequence of B. pilosicoli WesB, a human isolate, and the comparisons with B. pilosicoli 95/1000. We also draw on incomplete genome sequences from three other Brachyspira species. Finally we report the first application of the high-throughput Biolog phenotype screening tool on the B. pilosicoli strains for detailed comparisons between genotype and phenotype. Results. Feature and sequence genome comparisons revealed a high degree of similarity between the three B. pilosicoli strains, although the genomes of B2904 and WesB were larger than that of 95/1000 (~2,765, 2.890 and 2.596 Mb, respectively). Genome rearrangements were observed which correlated largely with the positions of mobile genetic elements. Through comparison of the B2904 and WesB genomes with the 95/1000 genome, features that we propose are non-essential due to their absence from 95/1000 include a peptidase, glycine reductase complex components and transposases. Novel bacteriophages were detected in the newly-sequenced genomes, which appeared to have involvement in intra- and inter-species horizontal gene transfer. Phenotypic differences predicted from genome analysis, such as the lack of genes for glucuronate catabolism in 95/1000, were confirmed by phenotyping. Conclusions. The availability of multiple B. pilosicoli genome sequences has allowed us to demonstrate the substantial genomic variation that exists between these strains, and provides an insight into genetic events that are shaping the species. In addition, phenotype screening allowed determination of how genotypic differences translated to phenotype. Further application of such comparisons will improve understanding of the metabolic capabilities of Brachyspira species.
Resumo:
The elaboration of curli fimbriae by Escherichia coli is associated with the development of a lacy colony morphology when groan on colonisation factor antigen agar at 25 degrees C. Avian colisepticaemia E. coli isolates screened for curliation by this culture technique showed lacy and smooth colonial morphologies and the genetic basis of the non-curliated smooth colonial phenotype was analysed. Two smooth E, coli O78:K80 isolates possessed about 40 copies of the IS1 element within their respective genomes of which one copy insertionally inactivated the csgB gene, the nucleator gene for curli fibril formation. One of these two isolates also possessed a defective rpoS gene which is a known regulator of curli expression. In the day-old chick model, both smooth isolates were as invasive as a known virulent O78:K80 isolate as determined by extent of liver and spleen colonisation post oral inoculation but were less persistent in terms of caecal colonisation. (C) 1999 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Europe has the greatest concentration of botanic gardens in the world, they cultivate extensive collections of plants that include samples of European threatened plant species. This study looks at the effectiveness of these collections in supporting species conservation. A three part study is presented: (1) the results of a survey and assessment of threatened plants in botanic gardens, as defined by the Bern Convention; (2) case studies illustrating current issues in the ex situ management of European threatened plant species; and (3) presentation of policy recommendations on further improving botanic garden contributions to European plant conservation. The survey indicated that of 119 European botanic gardens in 29 European countries, 105 are cultivating 308 of the 573 threatened plant species listed by the Bern Convention. The survey identified 25 botanic gardens in 14 countries undertaking 51 conservation projects focused on 27 Bern listed species. In particular this survey has established that the majority of taxa are held in a small number of collections, dominated by non-wild origin accessions, and are not adequately documented. The majority of specimens in botanic gardens are cultivated out of the range country and not contributing to a specific conservation project. We review the genetic representation and documentation of origin in collections. Existing plant collections contain representatives of populations, now lost in the wild and maintain samples of at least nine European plant taxa identified as 'Extinct in the Wild'. However, inadequate standards of record keeping has compromised the conservation value of many collections. We highlight the dangers of hybridisation and disease in ex situ collections. The results suggest that botanic garden collections are skewed towards horticulturally robust and ornamental species and do not fully reflect priorities as defined by the Bern Convention. Recognising the limitations of traditional botanic garden collections we propose that botanic gardens more effectively utilise their two core competencies, namely scientific horticulture and public display and interpretation. The unique horticultural skills resident in European botanic gardens could be more effectively utilised through the application of horticulture to the management of wild populations.
Resumo:
Quaternary climatic fluctuations have had profound effects on the phylogeographic structure of many species. Classically, species were thought to have become isolated in peninsular refugia, but there is limited evidence that large, non-polar species survived outside traditional refugial areas. We examined the phylogeographic structure of the red fox (Vulpes vulpes), a species that shows high ecological adaptability in the western Palaearctic region. We compared mitochondrial DNA sequences (cytochrome b and control region) from 399 modern and 31 ancient individuals from across Europe. Our objective was to test whether red foxes colonised the British Isles from mainland Europe in the late Pleistocene, or whether there is evidence that they persisted in the region through the Last Glacial Maximum. We found red foxes to show a high degree of phylogeographic structuring across Europe and, consistent with palaeontological and ancient DNA evidence, confirmed via phylogenetic indicators that red foxes were persistent in areas outside peninsular refugia during the last ice age. Bayesian analyses and tests of neutrality indicated population expansion. We conclude that there is evidence that red foxes from the British Isles derived from central European populations that became isolated after the closure of the landbridge with Europe.
Resumo:
The worldwide spread of barley cultivation required adaptation to agricultural environments far distant from those found in its centre of domestication. An important component of this adaptation is the timing of flowering, achieved predominantly in response to day length and temperature. Here, we use a collection of cultivars, landraces and wild barley accessions to investigate the origins and distribution of allelic diversity at four major flowering time loci, mutations at which have been under selection during the spread of barley cultivation into Europe. Our findings suggest that while mutant alleles at the PPD-H1 and PPD-H2 photoperiod loci occurred pre-domestication, the mutant vernalization non-responsive alleles utilized in landraces and cultivars at the VRN-H1 and VRN-H2 loci occurred post-domestication. The transition from wild to cultivated barley is associated with a doubling in the number of observed multi-locus flowering-time haplotypes, suggesting that the resulting phenotypic variation has aided adaptation to cultivation in the diverse ecogeographic locations encountered. Despite the importance of early-flowering alleles during the domestication of barley in Europe, we show that novel VRN alleles associated with early flowering in wild barley have been lost in domesticates, highlighting the potential of wild germplasm as a source of novel allelic variation for agronomic traits.
Resumo:
Global communicationrequirements andloadimbalanceof someparalleldataminingalgorithms arethe major obstacles to exploitthe computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication costin parallel data mining algorithms and, in particular, in the k-means algorithm for cluster analysis. In the straightforward parallel formulation of the k-means algorithm, data and computation loads are uniformly distributed over the processing nodes. This approach has excellent load balancing characteristics that may suggest it could scale up to large and extreme-scale parallel computing systems. However, at each iteration step the algorithm requires a global reduction operationwhichhinders thescalabilityoftheapproach.Thisworkstudiesadifferentparallelformulation of the algorithm where the requirement of global communication is removed, while maintaining the same deterministic nature ofthe centralised algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real-world distributed applications or can be induced by means ofmulti-dimensional binary searchtrees. The approachcanalso be extended to accommodate an approximation error which allows a further reduction ofthe communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing element
Resumo:
Planning is one of the key problems for autonomous vehicles operating in road scenarios. Present planning algorithms operate with the assumption that traffic is organised in predefined speed lanes, which makes it impossible to allow autonomous vehicles in countries with unorganised traffic. Unorganised traffic is though capable of higher traffic bandwidths when constituting vehicles vary in their speed capabilities and sizes. Diverse vehicles in an unorganised exhibit unique driving behaviours which are analysed in this paper by a simulation study. The aim of the work reported here is to create a planning algorithm for mixed traffic consisting of both autonomous and non-autonomous vehicles without any inter-vehicle communication. The awareness (e.g. vision) of every vehicle is restricted to nearby vehicles only and a straight infinite road is assumed for decision making regarding navigation in the presence of multiple vehicles. Exhibited behaviours include obstacle avoidance, overtaking, giving way for vehicles to overtake from behind, vehicle following, adjusting the lateral lane position and so on. A conflict of plans is a major issue which will almost certainly arise in the absence of inter-vehicle communication. Hence each vehicle needs to continuously track other vehicles and rectify plans whenever a collision seems likely. Further it is observed here that driver aggression plays a vital role in overall traffic dynamics, hence this has also been factored in accordingly. This work is hence a step forward towards achieving autonomous vehicles in unorganised traffic, while similar effort would be required for planning problems such as intersections, mergers, diversions and other modules like localisation.
Resumo:
Background: Phosphorus (P) is an essential macronutrient for plants. Plants take up P as phosphate (Pi) from the soil solution. Since little Pi is available in most soils, P fertilizers are applied to crops. However, the use of P fertilizers is unsustainable and may cause pollution. Consequently, there is a need to develop more P-use-efficient (PUE) crops and precise methods to monitor crop P-status. Scope: Manipulating the expression of genes to improve the PUE of crops could reduce their P fertilizer requirement. This has stimulated research towards the identification of genes and signalling cascades involved in plant responses to P deficiency. Genes that respond to P deficiency can be grouped into 'early' genes that respond rapidly and often non-specifically to P deficiency, or 'late' genes that impact on the morphology, physiology or metabolism of plants upon Prolonged P deficiency. Summary: The use of micro-array technology has allowed researchers to catalogue the genetic responses of plants to P deficiency. Genes whose expression is altered by P deficiency include various transcription factors, which are thought to coordinate plant responses to P deficiency, and other genes involved in P acquisition and tissue P economy. Several common cis-regulatory elements have been identified in the promoters of these genes, suggesting that their expression might be coordinated. It is suggested that knowledge of the genes whose expression changes in response to P deficiency might allow the development of crops with improved PUE, and could be used in diagnostic techniques to monitor P deficiency in crops either directly using 'smart' indicator plants or indirectly through transcript profiling. The development of crops with improved PUE and the adoption of diagnostic technology could reduce production costs, minimize the use of a non-renewable resource, reduce pollution and enhance biodiversity.
Resumo:
Climacteric and non-climacteric fruits have traditionally been viewed as representing two distinct programmes of ripening associated with differential respiration and ethylene hormone effects. In climacteric fruits, such as tomato and banana, the ripening process is marked by increased respiration and is induced and co-ordinated by ethylene, while in non-climacteric fruits, such as strawberry and grape, it is controlled by an ethylene-independent process with little change in respiration rate. The two contrasting mechanisms, however, both lead to texture, colour, and flavour changes that probably reflect some common programmes of regulatory control. It has been shown that a SEPALLATA(SEP)4-like gene is necessary for normal ripening in tomato. It has been demonstrated here that silencing a fruit-related SEP1/2-like (FaMADS9) gene in strawberry leads to the inhibition of normal development and ripening in the petal, achene, and receptacle tissues. In addition, analysis of transcriptome profiles reveals pleiotropic effects of FaMADS9 on fruit development and ripening-related gene expression. It is concluded that SEP genes play a central role in the developmental regulation of ripening in both climacteric and non-climacteric fruits. These findings provide important information to extend the molecular control of ripening in a non-climacteric fruit beyond the limited genetic and cultural options currently available.
Resumo:
Our study on white European adults was consistent with a previous study on children from largely non-white ethnic groups, suggesting that IL4 and MS4A2 genotypes modify the association between VDD and allergy risk. The risk allele in IL4 is present in nearly 90% of white Europeans, while less than a quarter are carriers in some other populations, highlighting the need to consider possible ethnic differences in allergy-related responsiveness to VDD.
Resumo:
Animal models are invaluable tools which allow us to investigate the microbiome-host dialogue. However, experimental design introduces biases in the data that we collect, also potentially leading to biased conclusions. With obesity at pandemic levels animal models of this disease have been developed; we investigated the role of experimental design on one such rodent model. We used 454 pyrosequencing to profile the faecal bacteria of obese (n = 6) and lean (homozygous n = 6; heterozygous n = 6) Zucker rats over a 10 week period, maintained in mixed-genotype cages, to further understand the relationships between the composition of the intestinal bacteria and age, obesity progression, genetic background and cage environment. Phylogenetic and taxon-based univariate and multivariate analyses (non-metric multidimensional scaling, principal component analysis) showed that age was the most significant source of variation in the composition of the faecal microbiota. Second to this, cage environment was found to clearly impact the composition of the faecal microbiota, with samples from animals from within the same cage showing high community structure concordance, but large differences seen between cages. Importantly, the genetically induced obese phenotype was not found to impact the faecal bacterial profiles. These findings demonstrate that the age and local environmental cage variables were driving the composition of the faecal bacteria and were more deterministically important than the host genotype. These findings have major implications for understanding the significance of functional metagenomic data in experimental studies and beg the question; what is being measured in animal experiments in which different strains are housed separately, nature or nurture?
Resumo:
The group of haemosporidian parasites is of general interest to basic and applied science, since several species infect mammals, leading to malaria and associated disease symptoms. Although the great majority of haemosporidian parasites appear in bird hosts, as in the case of Leucocytozoon buteonis, there is little genomic information about genetic aspects of their co-evolution with hosts. Consequently, there is a high need for parasite-enrichment strategies enabling further analyses of the genomes, namely without exposure to DNA-intercalating dyes. Here, we used flow cytometry without an additional labelling step to enrich L. buteonis from infected buzzard blood. A specific, defined area of two-dimensional scattergramms was sorted and the fraction was further analysed. The successful enrichment of L. buteonis in the sorted fraction was demonstrated by Giemsa-staining and qPCR revealing a clear increase of parasite-specific genes, while host-specific genes were significantly decreased. This is the first report describing a labelling-free enrichment approach of L. buteonis from infected buzzard blood. The enrichment of parasites presented here is free of nucleic acid-intercalating dyes which may interfere with fluorescence-based methods or subsequent sequencing approaches.
Resumo:
Background Autism spectrum conditions (ASC) are a group of neurodevelopmental conditions characterized by difficulties in social interaction and communication alongside repetitive and stereotyped behaviours. ASC are heritable, and common genetic variants contribute substantial phenotypic variability. More than 600 genes have been implicated in ASC to date. However, a comprehensive investigation of candidate gene association studies in ASC is lacking. Methods In this study, we systematically reviewed the literature for association studies for 552 genes associated with ASC. We identified 58 common genetic variants in 27 genes that have been investigated in three or more independent cohorts and conducted a meta-analysis for 55 of these variants. We investigated publication bias and sensitivity and performed stratified analyses for a subset of these variants. Results We identified 15 variants nominally significant for the mean effect size, 8 of which had P values below a threshold of significance of 0.01. Of these 15 variants, 11 were re-investigated for effect sizes and significance in the larger Psychiatric Genomics Consortium dataset, and none of them were significant. Effect direction for 8 of the 11 variants were concordant between both the datasets, although the correlation between the effect sizes from the two datasets was poor and non-significant. Conclusions This is the first study to comprehensively examine common variants in candidate genes for ASC through meta-analysis. While for majority of the variants, the total sample size was above 500 cases and 500 controls, the total sample size was not large enough to accurately identify common variants that contribute to the aetiology of ASC.