77 resultados para Negative dimensional integration method (NDIM)
Resumo:
We prove essential self-adjointness of a class of Dirichlet operators in ℝn using the hyperbolic equation approach. This method allows one to prove essential self-adjointness under minimal conditions on the logarithmic derivative of the density and a condition of Muckenhoupt type on the density itself.
Resumo:
An integration by parts formula is derived for the first order differential operator corresponding to the action of translations on the space of locally finite simple configurations of infinitely many points on Rd. As reference measures, tempered grand canonical Gibbs measures are considered corresponding to a non-constant non-smooth intensity (one-body potential) and translation invariant potentials fulfilling the usual conditions. It is proven that such Gibbs measures fulfill the intuitive integration by parts formula if and only if the action of the translation is not broken for this particular measure. The latter is automatically fulfilled in the high temperature and low intensity regime.
Resumo:
Shiga toxin producing Escherichia coli (STEC) strains are foodborne pathogens whose ability to produce Shiga toxin (Stx) is due to the integration of Stx-encoding lambdoid bacteriophage (Stx phage). Circulating, infective Stx phages are very difficult to isolate, purify and propagate such that there is no information on their genetic composition and properties. Here we describe a novel approach that exploits the phage's ability to infect their host and form a lysogen, thus enabling purification of Stx phages by a series of sequential lysogen isolation and induction steps. A total of 15 Stx phages were rigorously purified from water samples in this way, classified by TEM and genotyped using a PCR-based multi-loci characterisation system. Each phage possessed only one variant of each target gene type, thus confirming its purity, with 9 of the 15 phages possessing a short tail-spike gene and identified by TEM as Podoviridae. The remaining 6 phages possessed long tails, four of which appeared to be contractile in nature (Myoviridae) and two of which were morphologically very similar to bacteriophage lambda (Siphoviridae).
The unsteady flow of a weakly compressible fluid in a thin porous layer II: three-dimensional theory
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a three-dimensional layer, composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Numerical solution of this three-dimensional evolution problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l, a situation which occurs frequently in the application to oil and gas reservoir recovery and which leads to significant stiffness in the numerical problem. Under the assumption that $\epsilon\propto h/l\ll 1$, we show that, to leading order in $\epsilon$, the pressure field varies only in the horizontal directions away from the wells (the outer region). We construct asymptotic expansions in $\epsilon$ in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive expressions for all significant process quantities. The only computations required are for the solution of non-stiff linear, elliptic, two-dimensional boundary-value, and eigenvalue problems. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the layer, $\epsilon$, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighbourhood of wells and away from wells.
Resumo:
We describe a novel method for determining the pressure and velocity fields for a weakly compressible fluid flowing in a thin three-dimensional layer composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Our approach uses the method of matched asymptotic expansions to derive expressions for all significant process quantities, the computation of which requires only the solution of linear, elliptic, two-dimensional boundary value and eigenvalue problems. In this article, we provide full implementation details and present numerical results demonstrating the efficiency and accuracy of our scheme.
Resumo:
The currently available model-based global data sets of atmospheric circulation are a by-product of the daily requirement of producing initial conditions for numerical weather prediction (NWP) models. These data sets have been quite useful for studying fundamental dynamical and physical processes, and for describing the nature of the general circulation of the atmosphere. However, due to limitations in the early data assimilation systems and inconsistencies caused by numerous model changes, the available model-based global data sets may not be suitable for studying global climate change. A comprehensive analysis of global observations based on a four-dimensional data assimilation system with a realistic physical model should be undertaken to integrate space and in situ observations to produce internally consistent, homogeneous, multivariate data sets for the earth's climate system. The concept is equally applicable for producing data sets for the atmosphere, the oceans, and the biosphere, and such data sets will be quite useful for studying global climate change.
Resumo:
This work proposes a method to objectively determine the most suitable analogue redesign method for forward type converters under digital voltage mode control. Particular emphasis is placed on determining the method which allows the highest phase margin at the particular switching and crossover frequencies chosen by the designer. It is shown that at high crossover frequencies with respect to switching frequency, controllers designed using backward integration have the largest phase margin; whereas at low crossover frequencies with respect to switching frequency, controllers designed using bilinear integration have the largest phase margins. An accurate model of the power stage is used for simulation, and experimental results from a Buck converter are collected. The performance of the digital controllers is compared to that of the equivalent analogue controller both in simulation and experiment. Excellent correlation between the simulation and experimental results is presented. This work will allow designers to confidently choose the analogue redesign method which yields the greater phase margin for their application.
Resumo:
This paper generalises and applies recently developed blocking diagnostics in a two- dimensional latitude-longitude context, which takes into consideration both mid- and high-latitude blocking. These diagnostics identify characteristics of the associated wave-breaking as seen in the potential temperature (θ) on the dynamical tropopause, in particular the cyclonic or anticyclonic Direction of wave-Breaking (DB index), and the Relative Intensity (RI index) of the air masses that contribute to blocking formation. The methodology is extended to a 2-D domain and a cluster technique is deployed to classify mid- and high-latitude blocking according to the wave-breaking characteristics. Mid-latitude blocking is observed over Europe and Asia, where the meridional gradient of θ is generally weak, whereas high-latitude blocking is mainly present over the oceans, to the north of the jet-stream, where the meridional gradient of θ is much stronger. They occur respectively on the equatorward and poleward flank of the jet- stream, where the horizontal shear ∂u/∂y is positive in the first case and negative in the second case. A regional analysis is also conducted. It is found that cold-anticyclonic and cyclonic blocking divert the storm-track respectively to the south and to the north over the East Atlantic and western Europe. Furthermore, warm-cyclonic blocking over the Pacific and cold-anticyclonic blocking over Europe are identified as the most persistent types and are associated with large amplitude anomalies in temperature and precipitation. Finally, the high-latitude, cyclonic events seem to correlate well with low- frequency modes of variability over the Pacific and Atlantic Ocean.
Resumo:
We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N logN operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.
Resumo:
A generalized asymptotic expansion in the far field for the problem of cylindrical wave reflection at a homogeneous impedance plane is derived. The expansion is shown to be uniformly valid over all angles of incidence and values of surface impedance, including the limiting cases of zero and infinite impedance. The technique used is a rigorous application of the modified steepest descent method of Ot
Resumo:
e consider integral equations on the half-line of the form and the finite section approximation to x obtained by replacing the infinite limit of integration by the finite limit β. We establish conditions under which, if the finite section method is stable for the original integral equation (i.e. exists and is uniformly bounded in the space of bounded continuous functions for all sufficiently large β), then it is stable also for a perturbed equation in which the kernel k is replaced by k + h. The class of perturbations allowed includes all compact and some non-compact perturbations of the integral operator. Using this result we study the stability and convergence of the finite section method in the space of continuous functions x for which ()()()=−∫∞dttxt,sk)s(x0()syβxβx()sxsp+1 is bounded. With the additional assumption that ()(tskt,sk−≤ where ()()(),qsomefor,sassOskandRLkq11>+∞→=∈− we show that the finite-section method is stable in the weighted space for ,qp≤≤0 provided it is stable on the space of bounded continuous functions. With these results we establish error bounds in weighted spaces for x - xβ and precise information on the asymptotic behaviour at infinity of x. We consider in particular the case when the integral operator is a perturbation of a Wiener-Hopf operator and illustrate this case with a Wiener-Hopf integral equation arising in acoustics.
Resumo:
The energy-Casimir stability method, also known as the Arnold stability method, has been widely used in fluid dynamical applications to derive sufficient conditions for nonlinear stability. The most commonly studied system is two-dimensional Euler flow. It is shown that the set of two-dimensional Euler flows satisfying the energy-Casimir stability criteria is empty for two important cases: (i) domains having the topology of the sphere, and (ii) simply-connected bounded domains with zero net vorticity. The results apply to both the first and the second of Arnold’s stability theorems. In the spirit of Andrews’ theorem, this puts a further limitation on the applicability of the method. © 2000 American Institute of Physics.
Resumo:
The non-quadratic conservation laws of the two-dimensional Euler equations are used to show that the gravest modes in a doubly-periodic domain with aspect ratio L = 1 are stable up to translations (or structurally stable) for finite-amplitude disturbances. This extends a previous result based on conservation of energy and enstrophy alone. When L 1, a saturation bound is established for the mode with wavenumber |k| = L −1 (the next-gravest mode), which is linearly unstable. The method is applied to prove nonlinear structural stability of planetary wave two on a rotating sphere.
Resumo:
Arnol'd's second hydrodynamical stability theorem, proven originally for the two-dimensional Euler equations, can establish nonlinear stability of steady flows that are maxima of a suitably chosen energy-Casimir invariant. The usual derivations of this theorem require an assumption of zero disturbance circulation. In the present work an analogue of Arnol'd's second theorem is developed in the more general case of two-dimensional quasi-geostrophic flow, with the important feature that the disturbances are allowed to have non-zero circulation. New nonlinear stability criteria are derived, and explicit bounds are obtained on both the disturbance energy and potential enstrophy which are expressed in terms of the initial disturbance fields. While Arnol'd's stability method relies on the second variation of the energy-Casimir invariant being sign-definite, the new criteria can be applied to cases where the second variation is sign-indefinite because of the disturbance circulations. A version of Andrews' theorem is also established for this problem.
Resumo:
Global FGGE data are used to investigate several aspects of large-scale turbulence in the atmosphere. The approach follows that for two-dimensional, nondivergent turbulent flows which are homogeneous and isotropic on the sphere. Spectra of kinetic energy, enstrophy and available potential energy are obtained for both the stationary and transient parts of the flow. Nonlinear interaction terms and fluxes of energy and enstrophy through wavenumber space are calculated and compared with the theory. A possible method of parameterizing the interactions with unresolved scales is considered. Two rather different flow regimes are found in wavenumber space. The high-wavenumber regime is dominated by the transient components of the flow and exhibits, at least approximately, several of the conditions characterizing homogeneous and isotropic turbulence. This region of wavenumber space also displays some of the features of an enstrophy-cascading inertial subrange. The low-wavenumber region, on the other hand, is dominated by the stationary component of the flow, exhibits marked anisotropy and, in contrast to the high-wavenumber regime, displays a marked change between January and July.